Skip to main content
Log in

Phytoremediation of industrial wastewater potentiality by Typha domingensis

  • Case Report
  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Phytoremediation is increasingly receiving attention as a cost effective technique that uses plants to remediate contaminants from wastewater, soil and sediments. In this study, the ability of Typha domingensis to uptake heavy metals as well as its potential application for phytoremediation was assessed. Pollutant elements concentrations were measured in samples of wastewater, sediments and Typha domingensis collected from industrial wastewater ponds, El-Sadat city, Egypt. This study specifically focused on the capacity of Typha domingensis to absorb and accumulate aluminum, iron, zinc and lead. Results indicated that Typha domingensis was capable of accumulating the heavy metal ions preferentially from wastewater than from sediments. The accumulation of metals in plant organs attained the highest values in roots, rhizomes and old leaves. Rhizofiltration was found to be the best mechanism to explain Typha domingensis phytoremediation capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Ghani, N. T.; El-Chaghaby, G. A., (2008). The use low cost, environmental friendly materials for the removal of heavy metals from aqueous solutions. Curr. World Environ., 3(1), 31–38 (8 pages).

    CAS  Google Scholar 

  • Abdel Ghani, N. T.; Hegazy, A. K.; El-Chaghaby, G. A., (2009). Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling. Int. J. Environ. Sci. Tech., 6(2), 243–248 (6 pages).

    CAS  Google Scholar 

  • Abdel Ghani, N. T.; Hegazy, A. K.; El-Chaghaby, G. A., (2009). Factorial experimental design for biosorption of iron and zinc using Typha domingensis phytomass. Desalination, 249(1), 343–347 (5 pages).

    Article  CAS  Google Scholar 

  • Ajoy, K. R.; Archana, S.; Geeta, T., (1998). Some aspects of aluminum toxicity in plants. Botan. Rev., 54(2), 145–178 (34 pages).

    Google Scholar 

  • Al-Anber, Z. A.; Matouq, M. A. D., (2008). Batch adsorption of cadmium ions from aqueous solution by means of olive cake. J. Hazard. Mater., 151(1), 194–201 (8 pages).

    Article  CAS  Google Scholar 

  • AOAC, (2002a). Official Methods of Analysis. 17th Ed., Association of Official Analytical Chemists, Washington, DC. AOAC official method # 990.08.

  • AOAC, (2002b). Official Methods of Analysis. 17th Ed., Association of Official Analytical Chemists, Washington, DC. AOAC official method #985.01.

  • APHA; AWWA; WEF, (1998). Standard methods for the examination of water and wastewater. 20th. Ed. American Public Health Association, American Water Works Association and the Water Environment Federation. Washington DC., USA.

    Google Scholar 

  • Baker, A. J. M., (1981). Accumulators and excluder: strategies in response of plants to heavy metals. J. Plant Nutri., 3(1–4), 643–654 (12 pages).

    Article  CAS  Google Scholar 

  • Boulos, L., (2009). Flora of Egypt checklist. Revised annotated edition. Al-Hadara publishing, Cairo.

    Google Scholar 

  • Chandra, P.; Kulshreshtha, K.. (2004). Chromium accumulation and toxicity in aquatic vascular plants. Botan. Rev., 70(3), 313–327 (14 pages).

    Article  Google Scholar 

  • Daifullah, A. A. M.; Girgis, B. S.; Gad, H. M. H., (2003). Utilization of agro-residues (Rice Husk) in small wastewater treatment plans. Mater. Lett., 57(11), 1723–1731 (10 pages).

    Article  CAS  Google Scholar 

  • David, D.; Fiona, H.; Michelle, W.; Australian Water Quality Center, (2007). EPA Guidelines: Regulatory monitoring and testing Water and wastewater sampling.

  • Dekov, V. M.; Komy, Z.; Araujo, F.; Van Put, A.; Van Grieken, R., (1997). Chemical composition of sediments, suspended matter, river water and groundwater of the Nile (Aswan-Sohag traverse). Sci. Total Environ., 201(3), 195–210 (16 pages).

    Article  CAS  Google Scholar 

  • Denga, H.; Yea, Z. H.; Wonga, M. H., (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ. Pollut., 132(1), 29–40 (42 pages).

    Article  Google Scholar 

  • Dobermann, A.; Fairhurst, T., (2000). Nutrient disorders and nutrient management. Handbook series.

  • Dushenkov, S.; Kapulnik, Y., (2000). Phytofilitration of metals.” In: Phytoremediation of toxic metals — using plants to clean-up the environment. New York, John Wiley and Sons, Inc.

    Google Scholar 

  • Dushenkov, V.; Kumar, P.; Motto, H.; Raskin, I., (1995). Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ. Sci. Tech., 29(5), 1239–1245 (7 pages).

    Article  CAS  Google Scholar 

  • EEAA, (1994). Law number 4 of 1994 Promulgating the environmental law and its executive regulation, Egypt.

  • EEAA, (2002). Industrial Wastewater Treatment Plants Inspection Manual. Egyptian Environmental Affairs Agency.

  • Evangelou, V. P., (1998). Environmental soil and water chemistry principles and applications. Iowa state university, Iowa john Wiley and sons, Inc. New York.

    Google Scholar 

  • Ezzat, M. N.; Shehab, H.; Hassan, A. A.; El Sharkawy, M.; El Diasty, A.; El Assiouty, I.; El-Gohary, F. and Tczap, A. (2002). Survey of Nile system pollution sources: Report No. 64. APRP Water Policy Program.

  • Flathman, P. E.; Lanza, G. R., (1998). Phytoremediation: current views on an emerging green technology. J. Soil Contamin., 7(4), 415–432 (33 pages).

    Article  Google Scholar 

  • Forstner, U.; Salomons, W., (1991). Mobilization of metals from sediments. Merian, E. (Ed.). Metals and their compounds in the environment: Occurrence and analysis and biological relevance, VCH (Germany) (Verlagsgesellschaft mbH).

  • Gonzaga, M. I. S.; Santos, J. A. G.; Ma, L. Q., (2006). Arsenic phytoextraction and hyperaccumulation by fern species. Scientia Agricola (Piracicaba, Braz.). 63(1), 90–101 (12 pages).

    CAS  Google Scholar 

  • Hamza, A., (2001). Guidelines on environment friendly industrial cities. Technical Publication, Ministry of State for Environmental Affairs, Egypt.

    Google Scholar 

  • Janel, E. O.; Emily, D. N., (2006). Analysis of chemical contamination within a canal in a Mexican border colonia. Environ. Pollut., 140(3), 506–515 (10 pages).

    Article  Google Scholar 

  • Kabata-Pendias, A.; Pendias, H., (1992). Trace Elements in Soils and Plants, 2nd. Ed., CRC Press. Inc., Boca Raton, Florida.

    Google Scholar 

  • Levy, D. B.; Redente, E. F.; Uphoff, G. D., (1999). Evaluation of the phytotoxicity of Pb-Zn tailings to big bluestem (Andropogon gerardii Vitman) and switchgrass (Panicum virgatum L.). Soil Sci., 164(6), 363–375 (13 pages).

    Article  CAS  Google Scholar 

  • Lindsay, W. L., (1979). Chemical equilibria in soils. Willey, NewYork.

    Google Scholar 

  • Louis, A. L.; Isebrands, J. G., (2005). Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenerg., 28(2), 203–218 (16 pages).

    Article  Google Scholar 

  • Ma, L. Q.; Komar, K. M.; Tu, C.; Zhang, W.; Cai, Y.; Kennelly, E. D., (2001). A fern that hyperaccumulates arsenic. Nature Biotech., 409, 579 (1 page).

    Article  CAS  Google Scholar 

  • Maria, T. D.; Teodoro, M.; Jose, M. M.; Rainer, S.; Brett, H. R., (2008). Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: A large-scale phytomanagement case study. Environ. Pollut., 152(1), 50–59 (10 pages).

    Article  Google Scholar 

  • Mercedes, L.; Paul, K.; Chris, H.; Geoff, M.; Gavin, F.; Charles, E., (1998). Review of environmental performance indicators for toxic contaminants in the environment — air, water and land. Technical Paper # 37. Ministry for the Environment.

  • Negri, M.C.; Hinchman, R.R.; Gatliff E. G., (1996). Phytoremediation: Using green plants to clean up contaminated soil, groundwater, and wastewater. International Phytoremediation Conference, May 8–10, 1996, Arlington, VA. International Business Communications, Southborough, MA.

  • Nouri, J.; Khorasani, N.; Lorestani, B.; Karami, M.; Hassani, A.H.; Yousefi, N., (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ. Earth Sci., 59(2), 315–323 (9 pages).

    Article  CAS  Google Scholar 

  • Nouri, J.; Lorestani, B.; Yousefi, N.; Khorasani, N.; Hasani, A. H.; Seif, S.; Cheraghi, M., (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environ. Earth Sci., 62(3), 639–644 (6 pages).

    Article  CAS  Google Scholar 

  • Phillips, I. R., (2002). Phosphorus sorption and nitrogen transformation in two soils treated with piggery wastewater. Aust. J. Soil Res., 40(2), 335–349 (15 pages).

    Article  CAS  Google Scholar 

  • Riffat, S.; Arefin, M. T.; Mahmud, R., (2007). Phytoremediation of Boron Contaminated Soils by Naturally Grown Weeds. J. Soil Nature, 1(1): 01–06 (6 pages).

    Google Scholar 

  • Romheld, V.; Marschner, H., (1991). Function of micronutrients in plants. In JJ Mortvedt, FR Cox, LM Shuman, RM Welch, eds, Micronutrients in Agriculture, Ed 2. Soil Science Society of America, Madison, Wl.

    Google Scholar 

  • Sharifi, M.; Sadeghi, Y.; Akpapour, M., (2007). Germination and growth of six plant species on contaminated soil with spent oil. Int. J. Environ. Sci. Tech., 4(4), 463–470 (8 pages).

    Article  CAS  Google Scholar 

  • Salt, D.E.; Blaylock, M.; Kumar, N. P. B. A.; Dushenkov, V.; Ensley, D.; Chet, I.; Raskin, I., (1995). Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotech., 13, 468–474 (7 pages).

    Article  CAS  Google Scholar 

  • Sasmaz, A.; Erdal, O.; Halil, H., (2008). The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecologic. Eng., 33(3–4), 278–284 (7 pages).

    Google Scholar 

  • Satyakala, G.; Jamil, K., (1992). Chromium-induced biochemical changes in Eichhornia crassipes (Mart) solms and Pistia stratiotes L. Bull. Environ. Contaminat. Toxicol., 48(6), 921–928 (8 pages).

    CAS  Google Scholar 

  • Singh, S. K.; Juwarkar, A. A.; Kumar; S.; Meshram, J.; Fan, M., (2007). Effect of amendment on phytoextraction of arsenic by Vetiveria Zizanioides from soil. Int. J. Environ. Sci. Tech., 4(3), 339–344 (6 pages).

    CAS  Google Scholar 

  • Sutapa, B.; Bhattacharyya, A. K., (2008). Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere, 70(7), 1264–1272 (9 pages).

    Article  Google Scholar 

  • Sutapa, B.; Jagruti, V.; Vivek, R.; Ramanathan, A. L., (2008). Metal uptake and transport by Tyaha angustata L. grown on metal contaminated waste amended soil: An implication of phytoremediation. Geoderma, 145(1–2), 136–142 (7 pages).

    Google Scholar 

  • Tu, C.; Ma, L. Q., (2002). Effect of Arsenic concentrations and Forms on Arsenic Uptake by Hyperaccumulator Ladder Brake Fern. J. Environ. Qual., 31(2), 641–647 (7 pages).

    Article  CAS  Google Scholar 

  • US EPA, (1996). Eco Update: Ecotox Thresholds. Office of Solid Waste and Emergency Response. Washington, D.C.

    Google Scholar 

  • US EPA, (2001). A citizen’s Guide to Phytoremediation. EPA publication 542-F-98-011.

  • US EPA, (2002). National Recommended_Water Quality Criteria: 2002. Office of Water, Office of Science and Technology, Washington, DC.

    Google Scholar 

  • Wendy, A. P.; Baxter, I. R.; Richards, E. L.; Freeman, J. L.; Murphy, A. S., (2005). Phytoremediation and hyperaccumulator plants. In Topics in Current Genetics, Volume 14/2006, M. J. Tamas, E Martinoia (Eds.). Molecular Biology of Metal Homeostasis and Detoxification.

  • Yale Center for Environmental Law and Policy, (2008). Environmental Performance Index: Water Quality Index.

  • Yoon, J.; Xinde, C.; Qixing, Z. and Lena, Q. M., (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ., 368(2–3), 456–464 (9 pages).

    Article  CAS  Google Scholar 

  • Zaranyika, M. F.; Ndapwadza, T., (1995). Uptake of Ni, Zn, Fe, Co, Cr, Pb, Cu and Cd by water hyacinth (Eichhornia crassipes) in Mukuvsi and rivers, Zimbabwe. J. Environ. Sci. Health A., 30(1), 1157–1169 (13 pages).

    Google Scholar 

  • Zhao F. J., Lombi, E.; McGrath, S. P., (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil, 249(1), 37–43 (7 pages).

    Article  CAS  Google Scholar 

  • Zhang, H.; Dang, Z.; Zheng, L. C.; Yi, X. Y., (2009). Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int. J. Environ. Sci. Tech., 6(2), 249–258 (10 pages).

    Google Scholar 

  • Zhu, Y. L.; Zayed, A. M.; Quian, J. H.; De Souza, M.; Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J. Environ. Qual., 28(1), 339–344 (6 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Abdel-Ghani Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegazy, A.K., Abdel-Ghani, N.T. & El-Chaghaby, G.A. Phytoremediation of industrial wastewater potentiality by Typha domingensis . Int. J. Environ. Sci. Technol. 8, 639–648 (2011). https://doi.org/10.1007/BF03326249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326249

Keywords

Navigation