Skip to main content
Log in

An application of a general sampling theorem

  • Research article
  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

An extension of the sampling theorem to multi-band signals is discussed and an application to the compression of speech outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Beaty and M. M. Dodson. The distribution of sampling rates for signals with equally spaced, equally wide spectral bands. SIAM J. Appl. Math., 53 (1993), 893–906.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. G. Beaty, M. M. Dodson, and J. R. Higgins. Approximating Paley-Wiener functions by smoothed step functions. J. Approx. Th., 78 (1994) 433–445.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. G. Beaty and J. R. Higgins. Aliasing and Poisson summation in the sampling theory of Paley-Wiener spaces. J. Fourier Analysis and Applic, 1 (1994), 67–85.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Butzer and A. Gessinger. The approximate sampling theorem, Poisson’s sum formula, a decomposition theorem for Parseval’s equation and their interconnections. Workshop on Sampling Theory and Applications, Jurmala, Latvia, 1995.

  5. P. L. Butzer. A survey of the Whittaker-Shannon sampling theorem and some of its extensions. J. Math. Res. Exposition, 3 (1983), 185–212.

    MathSciNet  Google Scholar 

  6. P. L. Butzer, M. Hauss, and R. L. Stens. The sampling theorem and its unique role in various branches of mathematics. In Mathematical Sciences, Past and Present, 300 years of Mathematische Gesellschaft in Hamburg. Mitteilungen Math. Ges. Hamburg, Hamburg, 1990.

  7. P. L. Butzer, W. Splettstöβer, and R. L. Stens. The sampling theorem and linear prediction in signal analysis. Jber. d. Dt. Math.-Verein., 3 (1988), 1–70.

    Google Scholar 

  8. P.L. Butzer and R.L. Stens. Predictiofn-bandlimitedsignalsfrompastsamplesintermsofsplinesoflowdegree.Math.Nachr. 132 (1987), 115–13

    Article  MathSciNet  MATH  Google Scholar 

  9. P. L. Butzer and R. L. Stens. Sampling theory for not necessarily band-limited functions: a historical overview. SIAM Review, 34 (1992), 40–53.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Clunie, Q. I. Rahman, and W. Walker. On entire functions of exponential type bounded on the real axis. Preprint, Université de Montréal, 1997.

  11. M. Darnell, M. M. Dodson, B. Honary, and W. He. Adaptive-rate sampling applied to the storage and transmission of multiple band-pass signals. In Proc. Sixth Int. Conf. on System Engineering N. W. Bellamy (ed.), pp. 109-119, Coventry Polytechnic ICSE, 1988.

  12. M. M. Dodson and A. M. Silva. Fourier analysis and the sampling theorem. Proc. Royal Irish Acad., 85A (1985), 81–108.

    MathSciNet  Google Scholar 

  13. M. M. Dodson and A. M. Silva. An algorithm for optimal regular sampling. Signal Process., 17 (1989), 169–174.

    Article  MathSciNet  Google Scholar 

  14. R. Dodson. The Mauritius radio telescope and a study of selected supernova remnants associated with pulsars. PhD thesis, Durham University, Durham, UK, 1997.

    Google Scholar 

  15. J. R. Higgins. Five short stories about the cardinal series. Bull. Amer. Math. Soc, 12 (1985), 45–89.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. R. Higgins. Sampling theory in Fourier and signal analysis: Foundations. Clarendon Press, Oxford, 1996.

    Google Scholar 

  17. A. J. Jerri. The Shannon sampling theorem — its various extensions and applications: a tutorial review. Proc. IEEE, 65 (1977), 1565–1596.

    Article  MATH  Google Scholar 

  18. R. J. Marks II. Introduction to Shannon sampling and interpolation theory. Springer-Verlag, New York, 1991.

    Book  Google Scholar 

  19. R. J. Marks II (ed.). Advanced topics in Shannon sampling and interpolation theory. Springer-Verlag, New York, 1993.

    Book  Google Scholar 

  20. Q. I. Rahman and G. Schmeisser. The summation formulae of Poisson, Plana, Euler-Maclaurin and their relationship. J. Math. Sci. (Part I), 28 (1994), 151–171.

    MATH  Google Scholar 

  21. D. Sayre. Some implications of a theorem due to Shannon. Acta Cryst, 5 (1952), 834.

    Google Scholar 

  22. C. E. Shannon. A mathematical theory of communication. Bell Sys. Tech. J., 27 (1948), 379–423.

    MathSciNet  MATH  Google Scholar 

  23. C. E. Shannon. Communication in the presence of noise. Proc. IRE, 37 (1949), 10–21.

    Article  MathSciNet  Google Scholar 

  24. D. Slepian. On bandwidth. Proc. IEEE, 64 (1976), 292–300.

    Article  MathSciNet  Google Scholar 

  25. H. Taub and D. L. Schilling. Principles of communication systems. McGraw Hill, New York, second edition, 1986.

    Google Scholar 

  26. R. G. Vaughan, N. L. Scott, and D. R. White. The theory of bandpass sampling. IEEE. Trans. Signal Processing, 39 (1991), 1973–1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Paul Butzer to mark his seventieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaty, M.G., Dodson, M.M. An application of a general sampling theorem. Results. Math. 34, 241–254 (1998). https://doi.org/10.1007/BF03322054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322054

1991 Mathematics Subject Classification

Keywords