Skip to main content
Log in

Estimating the Error in the Koebe Construction

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

In 1912, Paul Koebe proposed an iterative method, the Koebe construction, to construct a conformal mapping of a non-degenerate, finitely connected domain D onto a circular domain C [9]. In 1959, Gaier provided a convergence proof of the construction which depends on prior knowledge of the circular domain [5]. We demonstrate that it is possible to compute the convergence rate solely from information about D. We do so by computing a suitable bound on the error in the Koebe construction (but, again, without knowing the circular domain in advance) by using a relatively recent result on the distortion of capacity by Thurman [12] and a generalization of Schwarz-Pick Lemma by He and Schramm [7].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Akhiezer, Aerodynamical Investigations, vol. 7, Ukrain. Akad. Nauk Trudi Fiz.-Mat. Viddilu, 1928.

  2. J. B. Conway, Functions of one Complex Variable II, Graduate Texts in Mathematics, vol. 159, Springer-Verlag, 1995.

  3. D. Crowdy, Geometric function theory: a modern view of a classical subject, Nonlinearity 21 no.10 (2008),, 205–219.

    Article  MathSciNet  Google Scholar 

  4. T. K. DeLillo, A. R. Elcrat and J. A. Pfaltzgraff, Schwarz-Christoffel mapping of multiply connected domains, J. Anal. Math. 94 (2004), 17–47.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Gaier, Untersuchung zur Durchführung der konformen Abbildung mehrfach zusammenhängender Gebiete, Arch. Rat. Mech. Anal. 3 (1959), 149–178.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. B. Garnett and D. E. Marshall, Harmonic measure, New Mathematical Monographs, vol. 2, Cambridge University Press, Cambridge, 2005.

    Book  MATH  Google Scholar 

  7. Z. He and O. Schramm, Fixed points, Koebe uniformization, and circle packings, Ann. of Math. 137 (1993), 369–406.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Henrici, Applied and Computational Complex Analysis. Vol. 3, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, 1986.

    Google Scholar 

  9. P. Koebe, Uber eine neue Methode der Konformen Abbildung und Uniformisierung, Nachr. Kgl. Ges. Wiss. Göttingen, Math.-Phys. K1. 1912 (1912), 844–848.

    Google Scholar 

  10. M. Schiffer, Some recent developments in the theory of conformal mapping, Appendix to: R. Courant, Dirichlet Principle, Conformal Mapping and Minimal Surfaces, Interscience Publishers, 1950.

  11. K. Strebel, Uber quadratische Differentiale mit geschlossenen Trajektorien und extremale quasikonforme Abbildungen, H. P. Künzi and A. Pfluger (eds.), Festband zum 70. Geburtstag von Rolf Nevanlinna (Berlin), Vorträge, gehalten anlässlich des Zweiten Rolf Nevanlinna-Kolloquiums in Zürich vom 4–6. November 1965, Springer-Verlag, 1966, pp. 105–127.

  12. R. E. Thurman, Upper bound for distortion of capacity under conformal mapping, Trans. Amer. Math. Soc. 346 no.2 (1994), 605–616.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Tsuji, Potential Theory, Chelsea, New York, 1975.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin V. Andreev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, V.V., McNicholl, T.H. Estimating the Error in the Koebe Construction. Comput. Methods Funct. Theory 11, 707–724 (2012). https://doi.org/10.1007/BF03321883

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321883

En]Keywords

2000 MSC

Navigation