Skip to main content
Log in

Matrix Representations of a Special Polynomial Sequence in Arbitrary Dimension

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

This paper provides an insight into different structures of a special polynomial sequence of binomial type in higher dimensions with values in a Clifford algebra. The elements of the special polynomial sequence are homogeneous hypercomplex differentiable (monogenic) functions of different degrees and their matrix representation allows for their recursive construction in the same way as for complex power functions. This property can somehow be considered as a compensation for the loss of multiplicativity caused by the non-commutativity of the underlying algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Abul-Ez and D. Constales, Basic sets of polynomials in Clifford analysis, Complex Variables, Theory Appl. 14 no.1 (1990), 177–185.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Appell, Sur une classe de polynômes, Ann. Sci. École Norm. Sup. 9 no.2 (1880), 119–144.

    MathSciNet  MATH  Google Scholar 

  3. S. Bock and K. Gürlebeck, On a generalized Appell system and monogenic power series, Math. Methods Appl. Sci. 33 no.4 (2010), 394–411.

    MathSciNet  MATH  Google Scholar 

  4. F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman, Boston-London-Melbourne, 1982.

    MATH  Google Scholar 

  5. I. Cação, M. I. Falcã and H. R. Malonek, Laguerre derivative and monogenic Laguerre polynomials: an operational approach, Math. Comput. Model. 53 no.5-6(2011), 1084–1094.

    Article  MATH  Google Scholar 

  6. I. Cação, M. I. Falcã and H. R. Malonek, On generalized hypercomplex Laguerre-type exponentials and applications, in: B. Murgante, O. Gervasi, A. Iglesias, D. Taniar and B. Apduhan (eds.), Computational Science and Its Applications — ICCSA 2011, Lecture Notes in Computer Science, vol. 6784, Springer-Verlag, Berlin Heidelberg, 2011, pp. 271–286.

    Chapter  Google Scholar 

  7. I. Cação and H. R. Malonek, On an hypercomplex generalization of Gould-Hopper and related Chebyshev polynomials, in: B. Murgante, O. Gervasi, A. Iglesias, D. Taniar and B. Apduhan (eds.), Computational Science and Its Applications — ICCSA 2011, Lecture Notes in Computer Science, vol. 6784, Springer-Verlag, Berlin Heidelberg, 2011, pp. 316–326.

    Chapter  Google Scholar 

  8. —, On complete sets of hypercomplex Appell polynomials, in: Th. E. Simos, G. Psihoyios and Ch. Tsitouras (eds.), AIP Conference Proceedings, vol. 1048, 2008, pp. 647–650.

  9. R. Delanghe, F. Sommen and V. Souček, Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator. Related REDUCE Software by F. Brackx and D. Constales, Mathematics and its Applications (Dordrecht), 53. Dordrecht etc.: Kluwer Academic Publishers, xvii, 1992.

  10. M. I. Falcã, J. Cruz and H. R. Malonek, Remarks on the generation of monogenic functions, in: 17th Inter. Conf. on the Appl. of Computer Science and Mathematics on Architecture and Civil Engineering, Weimar, 2006.

  11. M. I. Falcã and H. R. Malonek, Generalized exponentials through Appell sets in ℝn+1 and Bessel functions, in: Th. E. Simos, G. Psihoyios and Ch. Tsitouras (eds.), AIP Conference Proceedings, vol. 936, 2007, pp. 738–741.

  12. R. Fueter, Über Funktionen einer Quaternionenvariablen, Atti Congresso Bologna 2 (1930), 145.

    MathSciNet  Google Scholar 

  13. R. Fueter, Analytische Funktionen einer Quaternionenvariablen, Comment. Math. Helv. 4 (1932), 9–20.

    Article  MathSciNet  Google Scholar 

  14. R. Fueter, Über die analytische Darstellung der regulären Funktionen einer Qaternionenvariablen, Comment. Math. Helv. 8 no.1 (1935), 371–378.

    Article  MathSciNet  Google Scholar 

  15. K. Gürlebeck, K. Habetha and W. Sprössig, Holomorphic functions in the plane and n-dimensional space, Birkhäuser Verlag, Basel, 2008.

    MATH  Google Scholar 

  16. K. Gürlebeck and H. Malonek, A hypercomplex derivative of monogenic functions in ℝn+1 and its applications, Complex Variables Theory Appl. 39 (1999), 199–228.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Gürlebeck and W. Sprößig, Quaternionic Analysis and Elliptic Boundary Value Problems, International Series of Numerical Mathematics, vol. 89, Birkhäuser Verlag, Basel, 1990.

    Google Scholar 

  18. K. Habetha, Function theory in algebras, in: Complex Analysis — Methods, Trends, and Applications, Math. Lehrbücher Monogr., II. Abt., Math. Monogr. 61, 1983, pp. 225–237.

    MathSciNet  Google Scholar 

  19. R. Lávička, Canonical bases for sl(2, c)-modules of spherical monogenics in dimension 3, Arch. Math. (Brno) 46 (2010), 339–349.

    MathSciNet  Google Scholar 

  20. G. Laville and I. Ramadanoff, Holomorphic cliffordian functions, Adv. Appl. Clifford Algebras 8 (1998), 323–340.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Leutwiler, Modified Clifford analysis, Complex Variables, Theory Appl. 17 no.3-4 (1992), 153–171.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. R. Malonek and R. de Almeida, A note on a generalized Joukowski transformation, Appl. Math. Lett. 23 no.10 (2010), 1174–1178.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. R. Malonek, Selected topics in hypercomplex function theory, in: S.-L. Eriksson (ed.), Clifford algebras and potential theory, 7, University of Joensuu, 2004, pp. 111–150.

  24. H. R. Malonek, Rudolf Fueter and his motivation for hypercomplex function theory, Adv. Appl. Clifford Algebras 11 (2001), 219–229.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. R. Malonek and M. I. Falcão, Special monogenic polynomials — properties and applications, in: Th. E. Simos, G. Psihoyios and Ch. Tsitouras (eds.), AIP Conference Proceedings, vol. 936, 2007, pp. 764–767.

  26. S. R. Milner, The relation of Eddington’s E-numbers to the tensor calculus, I, the matrix form of E-numbers, Proc. R. Soc. Lond., Ser. A 214 (1952), 292–311.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Pompéiu, Sur une classe de fonctions d’une variable complexe, Palermo Rend. 33 (1912), 108–113.

    Article  MATH  Google Scholar 

  28. S. Roman, The Umbral Calculus, Dover, 1984.

  29. N. Salingaros, Some remarks on the algebra of Eddington’s E-numbers, Foundations of Physics 15 (1985), 683–691.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Cação.

Additional information

Dedicated to Nick Papamichael

This work was supported by FEDER founds through COMPETE-Operational Programme Factors of Competitiveness (“Programa Operacional Factores de Competitividade”) and by Portuguese funds through the Center for Research and Development in Mathematics and Applications (University of Aveiro) and the Portuguese Foundation for Science and Technology (“FCT-Fundação para a Ciência e a Tecnologia”), within project PEst-C/MAT/UI4106/2011with COMPETE number FCOMP-01-0124-FEDER-022690.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cação, I., Falcão, M.I. & Malonek, H.R. Matrix Representations of a Special Polynomial Sequence in Arbitrary Dimension. Comput. Methods Funct. Theory 12, 371–391 (2012). https://doi.org/10.1007/BF03321833

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321833

En]Keywords

2000 MSC

Navigation