Skip to main content
Log in

Catalase enzyme mutations and their association with diseases

  • Review Article
  • Published:
Molecular Diagnosis Aims and scope Submit manuscript

Abstract

Enzyme catalase seems to be the main regulator of hydrogen peroxide metabolism. Hydrogen peroxide at high concentrations is a toxic agent, while at low concentrations it appears to modulate some physiological processes such as signaling in cell proliferation, apoptosis, carbohydrate metabolism, and platelet activation. Benign catalase gene mutations of 5′ noncoding region (15) and intron 1 (4) have no effect on catalase activity and are not associated with disease.

Catalase gene mutations have been detected in association with diabetes mellitus, hypertension, and vitiligo. Decreases in catalase activity in patients with tumors is more likely to be due to decreased enzyme synthesis rather than to catalase mutations.

Acatalasemia, the inherited deficiency of catalase has been detected in 11 countries. Its clinical features might be oral gangrene, altered lipid, carbohydrate, homocysteine metabolism and the increased risk of diabetes mellitus. The Japanese, Swiss, and Hungarian types of acatalasemia display differences in biochemical and genetic aspects. However, there are only limited reports on the syndrome causing these mutations.

These data show that acatalasemia may be a syndrome with clinical, biochemical, genetic characteristics rather than just a simple enzyme deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Gaetani GF, Ferraris AM, Rolfo M, et al. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 1996; 87: 1595–9

    PubMed  CAS  Google Scholar 

  2. Mueller S, Riedel HD, Stremmel W. Direct evidence for catalase as the predominant H2O2 removing enzyme in erythrocytes. Blood 1997; 90: 4973–8

    PubMed  CAS  Google Scholar 

  3. Góth L. Determination of catalase enzyme activity in human tissues by programmable polarograph. Hungarian Sci Instruments 1982; 33: 43–5

    Google Scholar 

  4. Chance B, Sies H, Bovaris A. Hydrogen peroxide metabolism in mammalian organs. Physiol Rev 1979; 59: 527–605

    PubMed  CAS  Google Scholar 

  5. Agar S, Sadrzadeh SMM, Hallaway PE, et al. Erythrocyte catalase: a somatic oxidant defense. J Clin Invest 1986; 77: 319–21

    Article  PubMed  CAS  Google Scholar 

  6. Giulivi C, Hochstein P, Davies KJA. Hydrogen peroxide production by red blood cells. Free Radic Biol Med 1994; 16: 123–9

    Article  PubMed  CAS  Google Scholar 

  7. Góth L. Characterization of acatalasemia detected in two Hungarian sisters. Enzyme 1992; 46: 252–8

    PubMed  Google Scholar 

  8. Masuoka N, Wakimoto M, Ubuka T, et al. Spectrophotometric determination of hydrogen peroxide: catalase activity and rates of hydrogen peroxide removal by erythrocytes. Clin Chim Acta 1996; 254: 101–12

    Article  PubMed  CAS  Google Scholar 

  9. Cohen G, Hochstein P. Glutathione peroxidase the primary agent for the elimination of hydrogen peroxide in erythrocytes. Biochemistry 1963; 2: 1420–8

    Article  PubMed  CAS  Google Scholar 

  10. Masuoka N, Wakamito N, Ohta J, et al. Characterization of hydrogen peroxide removal activities in mouse hemolysate: catalase activity and hydrogen peroxide removal activity by hemoglobin. Biochim Biophys Acta 1997; 1361: 131–7

    Article  PubMed  CAS  Google Scholar 

  11. Nagababu E, Chrest FJ, Rifkind JM. Hydrogen peroxide induced heme degradation in red blood cells: the protective role of catalase and glutathione peroxidase. Biochem Biophys Acta 2003; 1620: 211–7

    Article  PubMed  CAS  Google Scholar 

  12. Masuoka N, Kodama H, Abe T, et al. Characterization of hydrogen peroxide removal by hemoglobin in the presence of reduced pyridine nucleotides. Biochim Biophys Acta 2003; 1637: 46–54

    Article  PubMed  CAS  Google Scholar 

  13. Hashida K, Sakakura Y, Makino N. Kinetic studies on hydrogen peroxide elimination by cultured PC12 cells: rate limitation by glucose-5-phosphate dehydrogenase. Biochem Biophys Acta 2002; 1572: 85–90

    Article  PubMed  CAS  Google Scholar 

  14. Sundaresan M, Yu ZM, Ferrans VJ, et al. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995; 270: 296–9

    Article  PubMed  CAS  Google Scholar 

  15. Burdon RH. Superoxide anions and hydrogen peroxide as cell signals in the balance between fibroblast proliferation and apoptosis. In: Davies KJA, Ursino F, editors. The oxygen paradox. Padona: CLEUP University Press, 1995: 428–38

    Google Scholar 

  16. Bae US, Kang SW, Seo MS, et al. Epidermal growth factor (EFG)-induced generation of hydrogen peroxide: role in EFG receptor mediated tyrosine phosphorylation. J Biol Chem 1997; 272: 217–21

    Article  PubMed  CAS  Google Scholar 

  17. Denu JM, Tanner KG. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implication for redox regulation. Biochemistry 1998; 37: 5633–42

    Article  PubMed  CAS  Google Scholar 

  18. Hansen LL, Ikeda Y, Olsen GS, et al. Insulin signaling is inhibited by micromolar concentration of H2O2: evidence for the role of H2O2 in tumor necrosis factor alpha-mediated insulin resistance. J Biol Chem 1999; 274: 25078–84

    Article  PubMed  CAS  Google Scholar 

  19. Sakai K, Matsumoto K, Nishikawa T, et al. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochem Biophys Res Commun 2003; 300: 216–22

    Article  PubMed  CAS  Google Scholar 

  20. Mahadev K, Wu XD, Zilberg A, et al. Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J Biol Chem 2001; 276: 42662–9

    Google Scholar 

  21. Evans JL, Goldfine ID, Maddux BA, et al. Oxidative stress and stress-activated signalling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002; 23: 599–622

    Article  PubMed  CAS  Google Scholar 

  22. Mahadev K, Wu XD, Motoshima M, et al. Integration of multiple downstream signals determinates the net effect of insulin on mAP kinase vs. PI 3′-kinase activation: potential role of insulin stimulated H2O2. Cell Signal 2004; 16: 323–31

    CAS  Google Scholar 

  23. Halliwell B, Gutteridge JMC. Oxygen toxicity, oxygen radicals transition metal ions and diseases. Biochem J 1984; 219: 1–4

    PubMed  CAS  Google Scholar 

  24. Szatrowski TP, Nathan CF. Production of large amount of hydrogen peroxide in human tumor cells. Cancer Res 1991; 51: 794–8

    PubMed  CAS  Google Scholar 

  25. Hampton MB, Orrenius S. Dual regulation of caspase activity by hydrogen peroxide: Implications for apoptosis. FEBS Lett 1997; 414: 552–6

    Article  PubMed  CAS  Google Scholar 

  26. Clement MV, Ponton A, Pervaiz S. Apoptosis induced by hydrogen peroxide is mediated by decreased Superoxide anion concentration and reduction of intracellular millieu. FEBS Lett 1998; 440: 13–8

    Article  PubMed  CAS  Google Scholar 

  27. Pervaiz S, Clement MV. Hydrogen peroxide induced apoptosis: oxidative or reductive stress? Methods Enzymol 2002; 352: 150–9

    Article  PubMed  CAS  Google Scholar 

  28. Blauin E, Halbwachs-Mecarelli L, Rieu P. Redox regulation of beta 2-integrin CD116/CD18 activation. Eur J Immunol 1999; 29: 3419–31

    Article  Google Scholar 

  29. Vepa S, Scribner WM, Parinandi NL. Hydrogen peroxide stimulates tyrosine phosphorylation of focal adhesion kinase in vascular endothelial cells. Am J Physiol 1999; 277: L135–58

    Google Scholar 

  30. Park S, Han SS, Park CH, et al. L-ascorbic acid induces apoptosis in acute myeloid leukemia cells via hydrogen peroxide-mediated mechanisms. Int J Biochem Cell Biol 2004; 36: 2180–95

    Article  PubMed  CAS  Google Scholar 

  31. Pignatelli P, Pulcinelli FM, Lenti L, et al. Hydrogen peroxide involved in collagen induced platelet activation. Blood 1998; 91: 484–90

    PubMed  CAS  Google Scholar 

  32. Peiro C, Lafuente N, Matesanz N, et al. High glucose concentration induces cell death of cultured human aortic smooth muscle cells through the formation of hydrogen peroxide. Br J Pharmacol 2001; 130: 969–74

    Google Scholar 

  33. Góth L, Eaton JW. Hereditary catalase deficiencies and increased risk of diabetes. Lancet 2000; 356: 1820–1

    Article  PubMed  Google Scholar 

  34. Ellis EA, Gubersky DL, Somogyi-Mann M, et al. Increased H2O2 vascular endothelial growth factor and receptors in the formation of the BBZ/WOR diabetic rat. Free Radic Biol Med 2000; 28: 91–101

    Article  PubMed  CAS  Google Scholar 

  35. Heales SFR. Catalase deficiencies, diabetes, and mitochondrial function [letter]. Lancet 2001; 357: 314

    Article  PubMed  CAS  Google Scholar 

  36. Góth L, Vitai M. The effect of hydrogen peroxide promoted by homocysteine and inherited catalase deficiency in human hypocatalasemic patients. Free Radic Biol Med 2003; 31: 490–8

    Google Scholar 

  37. Barbouti A, Doulias PT, Zhu BZ, et al. Intracellular iron, but not copper, plays up a critical role in hydrogen peroxide-induced DNA damage. Free Radic Biol Med 2001; 31: 490–8

    Article  PubMed  CAS  Google Scholar 

  38. Lortz S, Tiedge M, Nachtwey T, et al. Protection of insulin producing RINm5F cells against cytokine-mediated toxocity through overexpression of antioxidant enzymes. Diabetes 2000; 49: 1123–30

    Article  PubMed  CAS  Google Scholar 

  39. Bloch KO, Vorobeychi M, Yavrians K, et al. Selection of insulin producing rat insulinoma (RINm) cells with improved resistance to oxidative stress. Biochem Pharmacol 2003; 65: 1797–805

    Article  PubMed  CAS  Google Scholar 

  40. Bell GI, Najarian RC, Mullenbach GT, et al. cDNA sequence coding for human kidney catalase. Nucleic Acids Res 1986; 14: 5561–2

    PubMed  CAS  Google Scholar 

  41. Quan F, Korneluk RG, Tropak MB, et al. Isolation and characterization of the human catalase gene. Nucleic Acids Res 1986; 14: 5321–8335

    Article  PubMed  CAS  Google Scholar 

  42. Putnam CD, Arvai AS, Bourne Y. Active and inhibited human catalase structures: ligand and NADPH binding and catalase mechanism. J Mol Biol 2000; 296: 383–93

    Article  CAS  Google Scholar 

  43. Wen JK, Osumi T, Hashimoto T, et al. Molecular analysis of human acatalasemia. J Mol Biol 1990; 211: 383–93

    Article  PubMed  CAS  Google Scholar 

  44. Kishimoto Y, Murakami Y, Hayashi K, et al. Detection of a common mutation of the catalase gene in Japanese acatalasemic patients. Hum Genet 1992; 88: 487–90

    Article  PubMed  CAS  Google Scholar 

  45. Góth L, Vitai M. Polymorphism of 5′ of the catalase gene in Hungarian acatalasemia and hypocatalasemia. Electrophoresis 1997; 18: 1105–8

    Article  PubMed  Google Scholar 

  46. Góth L. Genetic heterogeneity of the 5′ uncoding region of the catalase gene in Hungarian acatalasemic and hypocatalasemic subjects. Clin Chim Acta 1998; 271: 73–8

    Article  PubMed  Google Scholar 

  47. Chystakov DA, Savastyanov KV, Turakulov RI, et al. The C1167T polymorphism of the catalase gene and polymorphic markers D11S907 and D11S2008 located in its vicinity are associated with diabetes mellitus type 2. Mol Biol 2000; 34: 733–6

    Article  Google Scholar 

  48. Forsberg L, Lyrenas L, Faire U, et al. A common C-T substitution polymorphism in the promoter region of the catalase geneinfluencies transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic Biol Med 2001; 30: 500–5

    Article  PubMed  CAS  Google Scholar 

  49. Jiang Z, Akey JM, Shi J, et al. A polymorphism in the promoter region of catalase is associated with blood pressure. Hum Genet 2001; 109: 95–8

    Article  PubMed  CAS  Google Scholar 

  50. Góth L, Vitai M, Rass P, et al. A novel catalase mutation (Hungarian type D) and its association with diabetes. Clin Chem Lab Med. In press.

  51. Vitai M, Fátrai S, Rass P, et al. Simple PCR-heteroduplex, -SSCP mutation screening methods for detection of novel catalase mutations in Hungarian patients with type 2 diabetes mellitus. Clin Chem Lab Med. In press.

  52. Góth L, Alizadeh BN, Sussman HH. Further characterization of Hungarian acatalasemia by Hinf1 polymorphism of catalase gene. Enzyme Protein 1993; 47: 156–9

    PubMed  Google Scholar 

  53. Casp CB, She JX, McCormack WT. Genetic association of the catalase gene (CAT) with vitiligo susceptibility. Pigment Cell Res 2002; 15: 62–6

    Article  PubMed  CAS  Google Scholar 

  54. Chystakov DA, Savastyanov KV, Chugunova LA, et al. Association study of C1167T polymorphism of the catalase gene and D6S392 locus nearby the Mn-dependent Superoxide dismutase gene with diabetic microangiopathy. Ter Arkh 2002; 74: 28–30

    Google Scholar 

  55. Sharpe MA, Ollosson R, Stewart VC, et al. Oxidation of nitric oxide by oxomanganase-salem complexes: a new mechanism for cellular protectivity by superoxide dismutase/catalase mimicks. Biochem J 2002; 366: 97–107

    PubMed  CAS  Google Scholar 

  56. Kozover BD, C-Solomidou M, Sweitzer TD, et al. Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury. Nat Biotechnol 2003; 21: 393–8

    Google Scholar 

  57. Hirono A, Sasaya-Hamada F, Kanna F, et al. A novel human catalase mutation (358T-del) causing Japanese-type acatalasemia. Blood Cells Mol Dis 1995; 21: 232–4

    Article  PubMed  CAS  Google Scholar 

  58. Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 1991; 196: 143–52

    Article  PubMed  Google Scholar 

  59. Crawford DR, Mirait ME, Moret R, et al. Molecular defect in human acatalasia fibroblast. Biochem Biophys Res Commun 1988; 153: 59–66

    Article  PubMed  CAS  Google Scholar 

  60. Vitai M, Góth L. Reference ranges of normal blood catalase activity and levels in familial hypocatalasemia in Hungary. Clin Chim Acta 1996; 261: 35–42

    Article  Google Scholar 

  61. Góth L, Lenkey A, Bigler WN. Blood catalase deficiency and diabetes in Hungary. Diabetes Care 2001; 24: 1839–40

    Article  PubMed  Google Scholar 

  62. Schallreuter KU, Wood JM, Berger J. Low catalase levels in epidermis of patients with vitiligo. J Invest Dermatol 1991; 97: 1081–5

    Article  PubMed  CAS  Google Scholar 

  63. Goulas A, Fidani L, Kotsis A, et al. An association study of a functional gene polymorphism, −262 C>T, and patients with Alzheimer’s disaese. Neurosci Lett 2002; 330: 210–2

    Article  PubMed  CAS  Google Scholar 

  64. Blumenthal F, Rahn B. Die Katalasewirkung in normaler und carcinomatoser Leber. Z Krebsforsch 1910; 9: 436–40

    Article  Google Scholar 

  65. Nakahara W, Fukuoka F. Toxohormone: a characteristic toxic substance produced by cancer tissue. Gann 1949; 40: 45–71

    Google Scholar 

  66. Begg RW. Tumor-host relations. Adv Cancer Res 1958; 5: 1–54

    Article  PubMed  CAS  Google Scholar 

  67. Greenstein JP, Jensette WV, White J. The liver catalase activity of tumor bearing rats and the effect of extirpation of the tumors. J Natl Cancer Inst 1941; 2: 238–9

    Google Scholar 

  68. Nakahara W, Fukuoka F. Mode of action of toxohormone: a third study on toxohormone: a characteristic toxic substance produced by cancer tissue. Gann 1951; 42: 55–63

    PubMed  Google Scholar 

  69. Nakahara W, Fukuoka F. The newer concept of cancer toxin. Adv Cancer Res 1958; 5: 157–77

    Article  PubMed  CAS  Google Scholar 

  70. Uenoyama K, Ono T. Post-transcriptional regulation of catalase synthesis in rat liver and hepatoma: factors activating and inhibiting catalase synthesis. J Mol Biol 1973; 74: 439–52

    Article  PubMed  CAS  Google Scholar 

  71. Sato K, Ito K, Kohara H, et al. Negative regulation of catalase gene expression in hepatoma cells. Mol Cell Biol 1992; 12: 2525–33

    PubMed  CAS  Google Scholar 

  72. Yano S, Yano N. Regulation of catalase enzyme activity by cell signaling molecules. Mol Cell Biochem 2002; 240: 119–30

    Article  PubMed  CAS  Google Scholar 

  73. Góth L. Hypocatalasemia in hospital patients. Clin Chem 1996; 42: 341–2

    PubMed  Google Scholar 

  74. Takahara S, Miyamoto H. Three cases of progressive oral gangrene due to lack of catalase in the blood. Jpn J Otol 1948; 81: 163–4

    Google Scholar 

  75. Takahara S. Progressive oral gangrene probably due to lack of catalase in the blood (acatalasemia): report of nine cases. Lancet 1952; II: 1101–4

    Article  Google Scholar 

  76. Takahara S. Acatalasemia in Japan. In: Beutler E, editor. Hereditary disorders of erythrocyte metabolism. New York: Grune and Shratton, 1968: 21–40

    Google Scholar 

  77. Eaton JW, Ma M. Acatalasemia. In: Schriver CR, Beaudet A, editors. The metabolic and molecular bases of inherited diseases. 2nd ed. Vol.2. New York: McGraw Hill, 1995: 2371–84

    Google Scholar 

  78. Aebi H, Heiniger JP, Bütler R, et al. Two cases of acatalasemia in Switzerland [brief communication]. Experentia 1961; 17: 466

    CAS  Google Scholar 

  79. Szeinberg A, Vries A, Pinkhas J, et al. A dual hereditary red blood cell defect in one family hypocatalasemia and glucose-6-phosphate dehydrogenase deficiency. Acta Genet Med Gemellol (Roma) 1963; 12: 247–52

    CAS  Google Scholar 

  80. Baur EW. Catalase abnormality in a Caucasian family in the United States. Science 1963; 140: 816–7

    Article  PubMed  CAS  Google Scholar 

  81. Taylor EH, Haunt A. Hypocatalasemia in two American men [abstract]. Clin Res 1967; 15: 289

    Google Scholar 

  82. Saldivar AA, Carracasco RMD, Reyes GR. Deficiencia de catalasa eritrocita en la ciudad de Pueblo. Rev Invest Clin 1974; 26: 47

    PubMed  CAS  Google Scholar 

  83. Gross J, Scherz B, Wyss SR, et al. Characterization of catalase of erythrocytes of a patient with the symptoms of Takahara’s disease. Acta Biol Med Ger 1977; 36: 793–5

    PubMed  CAS  Google Scholar 

  84. Delgado W, Calderon R. Acatalasemia in two Peruvian siblings. J Oral Pathol 1979; 8: 358–68

    Article  PubMed  CAS  Google Scholar 

  85. Ohkura K, Miyashita T, Nakajima H, et al. Distribution of polymorphic traits in Mazamdaranian and Guilanian in Iran. Hum Genet 1984; 27: 27–39

    Google Scholar 

  86. Pfügler G, Kaiser E. Acatalasia discovered by accident during a disk operation. Arch Orthop Trauma Surg 1988; 107: 189–90

    Article  Google Scholar 

  87. Góth L. Two cases of acatalasemia in Hungary. Clin Chim Acta 1992; 207: 155–8

    Article  PubMed  Google Scholar 

  88. Perner H, Krenkel C, Lackner B, et al. Acatalasemia-Takahara disease. Hautarzt 1999; 50: 590–2

    Article  PubMed  CAS  Google Scholar 

  89. Aebi H, Wyss SR. Acatalasemia. In: Schriver CR, Beaudet A, editors. The metabolic and molecular bases of inherited diseases. 2nd ed. Vol. 2. New York: McGraw Hill, 1955: 1792–807

    Google Scholar 

  90. Góth L. A new type of inherited catalase deficiencies: its characterization and comparison to the Japanese and Swiss type of acatalasemia. Blood Cells Mol Dis 2001; 27: 512–7

    Article  PubMed  Google Scholar 

  91. Aebi H, Wyss SR. Acatalasemia. In: Stanbury JB, Wyngaarden JB, Fredrickson DE, editors. The metabolic basis of inherited diseases. 4th ed. New York: McGraw Hill, 1977: 1792–807

    Google Scholar 

  92. Ogata M. Acatalasemia. Hum Genet 1991; 86: 331–40

    Article  PubMed  CAS  Google Scholar 

  93. Matsunaga T, Seger R, Höger L, et al. Congenital Acatalasemia: a study of neutrophil functions after provocation with hydrogen peroxide. Pediatr Res 1985; 19: 1187–91

    Article  PubMed  CAS  Google Scholar 

  94. Góth L. Lipid and carbohydrate metabolism in acatalasemia. Clin Chem 2000; 46: 564–6

    PubMed  Google Scholar 

  95. Andreoli TE, Carpenter CCJ, Bennett JC, et al. Cecil essentials of medicine. 4th ed. Philadelphia (PA): WB Saunders Co., 1997: 538

    Google Scholar 

  96. Bolano JP, Heales SJR, Land JM, et al. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurons and astrocytes in primary culture. J Neurochem 1995; 64: 1965–73

    Article  Google Scholar 

  97. Danmore ME, Speiser PW, Slorum AE. Early onset of diabetes mellitus associated with the mitochondrial DNA T14709C point mutation: patient report and literature review. J Pediatr Endocrinol Metab 1999; 12: 207–13

    Google Scholar 

  98. Greenwald RA. Superoxide dismutase and catalase as therapeutic agents for human diseases: a critical review. Free Radic Biol Med 1990; 8: 201–9

    Article  PubMed  CAS  Google Scholar 

  99. Góth L, Shemirani A, Kalmár T. A novel catalase mutation (a GA insertion) causes the Hungarian type of acatalasemia. Blood Cells Mol Dis 2000; 26: 151–4

    Article  PubMed  Google Scholar 

  100. Góth L, Gorzsás A, Kalmár T. A simple PCR-heteroduplex screening method for detection of a common mutation of the catalase gene in Hungary. Clin Chem 2001; 46: 1199–200

    Google Scholar 

  101. Góth L. A novel catalase mutation (a G insertion in exon 2) causes the type B of the Hungarian acatalasemia. Clin Chim Acta 2001; 311: 161–3

    Article  PubMed  Google Scholar 

  102. Góth L, Rass P, Madarasi I. A novel catalase mutation detected by polymerase chain reaction-single strand conformation polymorphism, nucleotide sequencing, and Western blot analyses is responsible for the type C of Hungarian acatalasemia. Electrophoresis 2001; 22: 49–51

    Article  PubMed  Google Scholar 

  103. Catalase, gene symbol: CAT. Human gene mutation database, Cardiff [online]. Available from URL: http://link.springer.de/journals/humangen/mutation [Accessed 2004 Oct 28]

  104. Thenard LJ. Ann Chim Phys 1819; 11: 85

    Google Scholar 

Download references

Acknowledgements

This work was supported with grants of the Zsigmond Diabetes Foundation (Hungarian Academy of Science, Budapest) and the Hungarian Scientific Research Fund (OTKA T042985).

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Góth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Góth, L., Rass, P. & Páy, A. Catalase enzyme mutations and their association with diseases. CNS Drugs 8, 141–149 (2004). https://doi.org/10.1007/BF03260057

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03260057

Keywords

Navigation