Skip to main content
Log in

Pharmacogenetics of Glucose-Lowering Drug Treatment

A Systematic Review

  • Endocrine Disorders
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Intensive blood glucose lowering can significantly reduce the risk of micro- and macrovascular complications in patients with diabetes mellitus. However, 30% of all treated patients do not achieve optimal blood glucose levels. Genetic factors may influence the response to glucose-lowering medication.

A search of MEDLINE-indexed literature published between January 1966 and July 2007 revealed 37 studies reporting data on genetic polymorphisms and response to glucose-lowering drugs.

Most studies involving cytochrome P450 (CYP) genes had small sample sizes (21 studies <50 subjects) and were among healthy volunteers. Multiple studies indicated that the CYP2C9 *3 allele (Ile359Leu polymorphism) was associated with decreased clearance of sulfonylurea drugs. Supporting this, one study reported an increased insulin secretion in CYP2C9*3 allele carriers when using the sulfonylurea agent glyburide. The CYP2C9*3 allele was also associated with a decreased clearance of meglitinides, whereas the CYP2C8*3 (Arg139Lys; Lys399Arg) variant increased the clearance of meglitinides.

Polymorphisms in genes encoding the inwardly rectifying potassium channel Kir6.2 (KCNJ11) and the insulin receptor substrate-1 (IRS1) were reported to be associated with an increased risk of (secondary) failure to respond to sulfonylurea therapy. A significant decrease in fasting plasma glucose and hemoglobin A1c (HbA1c) in response to rosiglitazone was seen in subjects carrying the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-γ (PPARG) gene. Conversely, carriers of this polymorphism also had a higher conversion to diabetes mellitus when treated with acarbose; this effect was also seen in adiponectin (ADIPOQ) gene polymorphism carriers.

Future studies with adequate sample sizes in which several SNPs in multiple candidate genes are genotyped in patients with diabetes should provide reliable information on genetic variants and response to glucose-lowering drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Gijsen R, Hoeymans N, Schellevis FG, et al. Causes and consequences of comorbidity: a review. J Clin Epidemiol 2001; 54(7): 661–74

    Article  PubMed  CAS  Google Scholar 

  2. Wright A, Burden AC, Paisey RB, et al. Sulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the U.K. Prospective Diabetes Study (UKPDS 57). Diabetes Care 2002; 25(2): 330–6

    Article  PubMed  CAS  Google Scholar 

  3. Schellhase KG, Koepsell TD, Weiss NS. Glycemic control and the risk of multiple microvascular diabetic complications. Fam Med 2005; 37(2): 125–30

    PubMed  Google Scholar 

  4. Cheng AY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ 2005; 172(2): 213–26

    Article  PubMed  Google Scholar 

  5. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 2005; 65(3): 385–411

    Article  PubMed  CAS  Google Scholar 

  6. Pearson ER, Liddell WG, Shepherd M, et al. Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1alpha gene mutations: evidence for pharmacogenetics in diabetes. Diabet Med 2000; 17(7): 543–5

    Article  PubMed  CAS  Google Scholar 

  7. Johnson JA. Pharmacogenetics: potential for individualized drug therapy through genetics. Trends Genet 2003; 19(11): 660–6

    Article  PubMed  CAS  Google Scholar 

  8. Maitland-van der Zee AH, de Boer A, Leufkens HG. The interface between pharmacoepidemiology and pharmacogenetics. Eur J Pharmacol 2000; 410(2–3): 121–30

    Article  PubMed  CAS  Google Scholar 

  9. Schelleman H, Stricker BH, de Boer A, et al. Drug-gene interactions between genetic polymorphisms and antihypertensive therapy. Drugs 2004; 64(16): 1801–16

    Article  PubMed  CAS  Google Scholar 

  10. Kidd RS, Straughn AB, Meyer MC, et al. Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics 1999; 9(1): 71–80

    Article  PubMed  CAS  Google Scholar 

  11. Zung A, Glaser B, Nimri R, et al. Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2. J Clin Endocrinol Metab 2004; 89(11): 5504–7

    Article  PubMed  CAS  Google Scholar 

  12. Slingerland AS, Nuboer R, Hadders-Algra M, et al. Improved motor development and good long-term glycaemic control with sulfonylurea treatment in a patient with the syndrome of intermediate developmental delay, early-onset generalised epilepsy and neonatal diabetes associated with the V59M mutation in the KCNJ11 gene. Diabetologia 2006; 49(11): 2559–63

    Article  PubMed  CAS  Google Scholar 

  13. Bosselaar M, Hattersley AT, Tack CJ. High sensitivity to sulphonylurea treatment in 2 patients with maturity-onset diabetes of the young type 3 [in Dutch]. Ned Tijdschr Geneeskd 2002; 146(15): 726–9

    PubMed  CAS  Google Scholar 

  14. Becker ML, Visser LE, Trienekens PH, et al. Cytochrome P450 2C9 (*)2 and (*)3 polymorphisms and the dose and effect of sulfonylurea in type II diabetes mellitus. Clin Pharmacol Ther. Epub 2007 Jun 27

  15. Lee CR, Pieper JA, Hinderliter AL, et al. Evaluation of cytochrome P4502C9 metabolic activity with tolbutamide in CYP2C91 heterozygotes. Clin Pharmacol Ther 2002; 72(5): 562–71

    Article  PubMed  CAS  Google Scholar 

  16. Kirchheiner J, Bauer S, Meineke I, et al. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 2002; 12(2): 101–9

    Article  PubMed  CAS  Google Scholar 

  17. Lee CR, Pieper JA, Frye RF, et al. Tolbutamide, flurbiprofen, and losartan as probes of CYP2C9 activity in humans. J Clin Pharmacol 2003; 43(1): 84–91

    Article  PubMed  CAS  Google Scholar 

  18. Shon JH, Yoon YR, Kim KA, et al. Effects of CYP2C19 and CYP2C9 genetic polymorphisms on the disposition of and blood glucose lowering response to tolbutamide in humans. Pharmacogenetics 2002; 12(2): 111–9

    Article  PubMed  CAS  Google Scholar 

  19. Niemi M, Cascorbi I, Timm R, et al. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther 2002; 72(3): 326–32

    Article  PubMed  CAS  Google Scholar 

  20. Kirchheiner J, Brockmoller J, Meineke I, et al. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin Pharmacol Ther 2002; 71(4): 286–96

    Article  PubMed  CAS  Google Scholar 

  21. Yin OQ, Tomlinson B, Chow MS. CYP2C9, but not CYP2C19, polymorphisms affect the pharmacokinetics and pharmacodynamics of glyburide in Chinese subjects. Clin Pharmacol Ther 2005; 78(4): 370–7

    Article  PubMed  CAS  Google Scholar 

  22. Wang R, Chen K, Wen SY, et al. Pharmacokinetics of glimepiride and cytochrome P450 2C9 genetic polymorphisms. Clin Pharmacol Ther 2005; 78(1): 90–2

    Article  PubMed  CAS  Google Scholar 

  23. Shon JH, Yoon YR, Kim MJ, et al. Chlorpropamide 2-hydroxylation is catalysed by CYP2C9 and CYP2C19 in vitro: chlorpropamide disposition is influenced by CYP2C9, but not by CYP2C19 genetic polymorphism. Br J Clin Pharmacol 2005; 59(5): 552–63

    Article  PubMed  CAS  Google Scholar 

  24. Holstein A, Plaschke A, Ptak M, et al. Association between CYP2C9 slow metabolizer genotypes and severe hypoglycaemia on medication with sulphonylurea hypoglycaemic agents. Br J Clin Pharmacol 2005; 60(1): 103–6

    Article  PubMed  CAS  Google Scholar 

  25. Kirchheiner J, Meineke I, Muller G, et al. Influence of CYP2C9 and CYP2D6 polymorphisms on the pharmacokinetics of nateglinide in genotyped healthy volunteers. Clin Pharmacokinet 2004; 43(4): 267–78

    Article  PubMed  CAS  Google Scholar 

  26. Niemi M, Leathart JB, Neuvonen M, et al. Polymorphism in CYP2C8 is associated with reduced plasma concentrations of repaglinide. Clin Pharmacol Ther 2003; 74(4): 380–7

    Article  PubMed  CAS  Google Scholar 

  27. Niemi M, Backman JT, Kajosaari LI, et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther 2005; 77(6): 468–78

    Article  PubMed  CAS  Google Scholar 

  28. Kirchheiner J, Thomas S, Bauer S, et al. Pharmacokinetics and pharmacodynamics of rosiglitazone in relation to CYP2C8 genotype. Clin Pharmacol Ther 2006; 80(6): 657–67

    Article  PubMed  CAS  Google Scholar 

  29. Zhang W, He YJ, Han CT, et al. Effect of SLCO1B1 genetic polymorphism on the pharmacokinetics of nateglinide. Br J Clin Pharmacol 2006; 62(5): 567–72

    Article  PubMed  CAS  Google Scholar 

  30. Kalliokoski A, Neuvonen M, Neuvonen PJ, et al. No significant effect of SLCO1B1 polymorphism on the pharmacokinetics of rosiglitazone and pioglitazone. Br J Clin Pharmacol. Epub 2007 Jul 17

  31. Meirhaeghe A, Helbecque N, Cottel D, et al. Impact of sulfonylurea receptor 1 genetic variability on non-insulin-dependent diabetes mellitus prevalence and treatment: a population study. Am J Med Genet 2001; 101(1): 4–8

    Article  PubMed  CAS  Google Scholar 

  32. Zychma MJ, Gumprecht J, Strojek K, et al. Sulfonylurea receptor gene 16-3 polymorphism: association with sulfonylurea or insulin treatment in type 2 diabetic subjects. Med Sci Monit 2002; 8(7): CR512–5

    PubMed  CAS  Google Scholar 

  33. Hansen T, Echwald SM, Hansen L, et al. Decreased tolbutamide-stimulated insulin secretion in healthy subjects with sequence variants in the high-affinity sulfonylurea receptor gene. Diabetes 1998; 47(4): 598–605

    Article  PubMed  CAS  Google Scholar 

  34. Hansen T, Ambye L, Grarup N, et al. Genetic variability of the SUR1 promoter in relation to beta-cell function and Type II diabetes mellitus. Diabetologia 2001; 44(10): 1330–4

    Article  PubMed  CAS  Google Scholar 

  35. Grimberg A, Ferry Jr RJ, Kelly A, et al. Dysregulation of insulin secretion in children with congenital hyperinsulinism due to sulfonylurea receptor mutations. Diabetes 2001; 50(2): 322–8

    Article  PubMed  CAS  Google Scholar 

  36. Sesti G, Marini MA, Cardellini M, et al. The Arg972 variant in insulin receptor substrate-1 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. Diabetes Care 2004; 27(6): 1394–8

    Article  PubMed  CAS  Google Scholar 

  37. Sesti G, Laratta E, Cardellini M, et al. The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenosine 5′-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J Clin Endocrinol Metab 2006 Jun; 91(6): 2334–9

    Article  PubMed  CAS  Google Scholar 

  38. Bluher M, Lubben G, Paschke R. Analysis of the relationship between the Pro12Ala variant in the PPAR-gamma2 gene and the response rate to therapy with pioglitazone in patients with type 2 diabetes. Diabetes Care 2003; 26(3): 825–31

    Article  PubMed  CAS  Google Scholar 

  39. Florez JC, Jablonski KA, Sun MW, et al. Effects of the type 2 diabetes-associated PPARG P12A polymorphism on progression to diabetes and response to troglitazone. J Clin Endocrinol Metab 2007; 92(4): 1502–9

    Article  PubMed  CAS  Google Scholar 

  40. Snitker S, Watanabe RM, Ani I, et al. Changes in insulin sensitivity in response to troglitazone do not differ between subjects with and without the common, functional Prol2Ala peroxisome proliferator-activated receptor-gamma2 gene variant: results from the Troglitazone in Prevention of Diabetes (TRIPOD) study. Diabetes Care 2004; 27(6): 1365–8

    Article  PubMed  CAS  Google Scholar 

  41. Kang ES, Park SY, Kim HJ, et al. Effects of Pro12Ala polymorphism of peroxisome proliferator-activated receptor gamma2 gene on rosiglitazone response in type 2 diabetes. Clin Pharmacol Ther 2005; 78(2): 202–8

    Article  PubMed  CAS  Google Scholar 

  42. Kang ES, Park SY, Kim HJ, et al. The influence of adiponectin gene polymorphism on the rosiglitazone response in patients with type 2 diabetes. Diabetes Care 2005; 28(5): 1139–44

    Article  PubMed  CAS  Google Scholar 

  43. Wion KL, Kirchgessner TG, Lusis AJ, et al. Human lipoprotein lipase complementary DNA sequence. Science 1987; 235(4796): 1638–41

    Article  PubMed  CAS  Google Scholar 

  44. Ertunc D, Tok EC, Aktas A, et al. The importance of IRS-1 Gly972Arg polymorphism in evaluating the response to metformin treatment in polycystic ovary syndrome. Hum Reprod 2005; 20(5): 1207–12

    Article  PubMed  CAS  Google Scholar 

  45. Florez JC, Jablonski KA, Kahn SE, et al. Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes 2007; 56(2): 531–6

    Article  PubMed  CAS  Google Scholar 

  46. Pearson ER, Starkey BJ, Powell RJ, et al. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 2003; 362(9392): 1275–81

    Article  PubMed  CAS  Google Scholar 

  47. Sagen JV, Pearson ER, Johansen A, et al. Preserved insulin response to tolbutamide in hepatocyte nuclear factor-1 alpha mutation carriers. Diabet Med 2005; 22(4): 406–9

    Article  PubMed  CAS  Google Scholar 

  48. Pearson ER, Donnelly LA, Kimber C, et al. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes 2007; 56(8): 2178–82

    Article  PubMed  CAS  Google Scholar 

  49. Andrulionyte L, Zacharova J, Chiasson JL, et al. Common polymorphisms of the PPAR-gamma2 (Pro12Ala) and PGC-1alpha (Gly482Ser) genes are associated with the conversion from impaired glucose tolerance to type 2 diabetes in the STOP-NIDDM trial. Diabetologia 2004; 47(12): 2176–84

    Article  PubMed  CAS  Google Scholar 

  50. Zacharova J, Chiasson JL, Laakso M. The common polymorphisms (single nucleotide polymorphism [SNP] +45 and SNP +276) of the adiponectin gene predict the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. Diabetes 2005; 54(3): 893–9

    Article  PubMed  CAS  Google Scholar 

  51. Dorado P, Berecz R, Norberte MJ, et al. CYP2C9 genotypes and diclofenac metabolism in Spanish healthy volunteers. Eur J Clin Pharmacol 2003; 59(3): 221–5

    Article  PubMed  CAS  Google Scholar 

  52. Scordo MG, Aklillu E, Yasar U, et al. Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population. Br J Clin Pharmacol 2001; 52(4): 447–50

    Article  PubMed  CAS  Google Scholar 

  53. Yasar U, Eliasson E, Dahl ML, et al. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 1999; 254(3): 628–31

    Article  PubMed  CAS  Google Scholar 

  54. Stubbins MJ, Harries LW, Smith G, et al. Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics 1996; 6(5): 429–39

    Article  PubMed  CAS  Google Scholar 

  55. Yang JQ, Morin S, Verstuyft C, et al. Frequency of cytochrome P450 2C9 allelic variants in the Chinese and French populations. Fundam Clin Pharmacol 2003; 17(3): 373–6

    Article  PubMed  CAS  Google Scholar 

  56. Yoon YR, Shon JH, Kim MK, et al. Frequency of cytochrome P450 2C9 mutant alleles in a Korean population. Br J Clin Pharmacol 2001; 51(3): 277–80

    Article  PubMed  CAS  Google Scholar 

  57. Wang SL, Huang J, Lai MD, et al. Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese. Pharmacogenetics 1995; 5(1): 37–42

    Article  PubMed  CAS  Google Scholar 

  58. Gaedigk A, Casley WL, Tyndale RF, et al. Cytochrome P4502C9 (CYP2C9) allele frequencies in Canadian Native Indian and Inuit populations. Can J Physiol Pharmacol 2001; 79(10): 841–7

    Article  PubMed  CAS  Google Scholar 

  59. Roh HK, Dahl ML, Tybring G, et al. CYP2C19 genotype and phenotype determined by omeprazole in a Korean population. Pharmacogenetics 1996; 6(6): 547–51

    Article  PubMed  CAS  Google Scholar 

  60. Garcia-Barcelo M, Chow LY, Kum Chiu HF, et al. Frequencies of defective CYP2C19 alleles in a Hong Kong Chinese population: detection of the rare allele CYP2C19*4. Clin Chem 1999; 45(12): 2273–4

    PubMed  CAS  Google Scholar 

  61. Dai D, Zeldin DC, Blaisdell JA, et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 2001; 11(7): 597–607

    Article  PubMed  CAS  Google Scholar 

  62. Pasanen MK, Backman JT, Neuvonen PJ, et al. Frequencies of single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide 1B1 SLCO1B1 gene in a Finnish population. Eur J Clin Pharmacol 2006; 62(6): 409–15

    Article  PubMed  CAS  Google Scholar 

  63. Shikata E, Yamamoto R, Takane H, et al. Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J Hum Genet 2007; 52(2): 117–22

    Article  PubMed  CAS  Google Scholar 

  64. Hart LM, de Knijff P, Dekker JM, et al. Variants in the sulphonylurea receptor gene: association of the exon 16-3t variant with type II diabetes mellitus in Dutch Caucasians. Diabetologia 1999; 42(5): 617–20

    Article  PubMed  CAS  Google Scholar 

  65. Bezerra RM, Chadid TT, Altemani CM, et al. Lack of Arg972 polymorphism in the IRS1 gene in Parakana Brazilian Indians. Hum Biol 2004; 76(1): 147–51

    Article  PubMed  Google Scholar 

  66. Ghoussaini M, Meyre D, Lobbens S, et al. Implication of the Prol2Ala polymorphism of the PPAR-gamma 2 gene in type 2 diabetes and obesity in the French population. BMC Med Genet 2005; 6: 11

    Article  PubMed  Google Scholar 

  67. Ambye L, Rasmussen S, Fenger M, et al. Studies of the Gly482Ser polymorphism of the peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) gene in Danish subjects with the metabolic syndrome. Diabetes Res Clin Pract 2005; 67(2): 175–9

    Article  PubMed  CAS  Google Scholar 

  68. Lehto M, Wipemo C, Ivarsson SA, et al. High frequency of mutations in MODY and mitochondrial genes in Scandinavian patients with familial early-onset diabetes. Diabetologia 1999; 42(9): 1131–7

    Article  PubMed  CAS  Google Scholar 

  69. Rettie AE, Jones JP. Clinical and toxicological relevance of CYP2C9: drug-drug interactions and pharmacogenetics. Annu Rev Pharmacol Toxicol 2005; 45: 477–94

    Article  PubMed  CAS  Google Scholar 

  70. Bidstrup TB, Bjornsdottir I, Sidelmann UG, et al. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br J Clin Pharmacol 2003; 56(3): 305–14

    Article  PubMed  CAS  Google Scholar 

  71. Jonker JW, Schinkel AH. Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther 2004; 308(1): 2–9

    Article  PubMed  CAS  Google Scholar 

  72. Ueda K, Matsuo M, Tanabe K, et al. Comparative aspects of the function and mechanism of SURI and MDR1 proteins. Biochim Biophys Acta 1999; 1461(2): 305–13

    Article  PubMed  CAS  Google Scholar 

  73. Mousavinasab F, Tahtinen T, Jokelainen J, et al. Common polymorphisms in the PPARgamma2 and IRS-1 genes and their interaction influence serum adiponectin concentration in young Finnish men. Mol Genet Metab 2005; 84(4): 344–8

    Article  PubMed  CAS  Google Scholar 

  74. Mudaliar S, Henry RR. New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers. Annu Rev Med 2001; 52: 239–57

    Article  PubMed  CAS  Google Scholar 

  75. Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002; 418(6899): 797–801

    Article  PubMed  CAS  Google Scholar 

  76. Michael LF, Wu Z, Cheatham RB, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad sci U S A 2001; 98(7): 3820–5

    Article  PubMed  CAS  Google Scholar 

  77. Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001; 413(6852): 131–8

    Article  PubMed  CAS  Google Scholar 

  78. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARgamma Prol2Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000; 26(1): 76–80

    Article  PubMed  CAS  Google Scholar 

  79. Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86(5): 1930–5

    Article  PubMed  CAS  Google Scholar 

  80. Hara K, Boutin P, Mori Y, et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes 2002; 51(2): 536–40

    Article  PubMed  CAS  Google Scholar 

  81. Koo BK, Cho YM, Park BL, et al. Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with type 2 diabetes and hypertension in the Korean population. Diabet Med 2007; 24(2): 178–86

    Article  PubMed  CAS  Google Scholar 

  82. Hattersley AT. Prime suspect: the TCF7L2 gene and type 2 diabetes risk 10.1172/JCI33077. J Clin Invest 2007; 117(8): 2077–9

    Article  PubMed  CAS  Google Scholar 

  83. Lyssenko V, Lupi R, Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes 10.1172/JCI30706. J Clin Invest 2007; 117(8): 2155–63

    Article  PubMed  CAS  Google Scholar 

  84. Wang H, Hagenfeldt-Johansson K, Otten LA, et al. Experimental models of transcription factor-associated maturity-onset diabetes of the young. Diabetes 2002; 51Suppl. 3: S333–42

    Article  PubMed  CAS  Google Scholar 

  85. Henderson HE, Kastelein JJP, Zwinderman AH, et al. Lipoprotein lipase activity is decreased in a large cohort of patients with coronary artery disease and is associated with changes in lipids and lipoproteins. J Lipid Res 1999; 40(4): 735–43

    PubMed  CAS  Google Scholar 

  86. Mead JR, Cryer A, Ramji DP. Lipoprotein lipase, a key role in atherosclerosis? FEBS Lett 1999; 462(1–2): 1–6

    Article  PubMed  CAS  Google Scholar 

  87. Wang G, Wang X, Zhang Q, et al. Response to pioglitazone treatment is associated with the lipoprotein lipase S447X variant in subjects with type 2 diabetes mellitus. Int J Clin Pract 2007; 61(4): 552–7

    Article  PubMed  CAS  Google Scholar 

  88. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007; 445(7130): 881–5

    Article  PubMed  CAS  Google Scholar 

  89. Nannipieri M, Posadas R, Bonotti A, et al. Polymorphism of the 3′-untranslated region of the leptin receptor gene, but not the adiponectin SNP45 polymorphism, predicts type 2 diabetes: a population-based study. Diabetes Care 2006; 29(11): 2509–11

    Article  PubMed  CAS  Google Scholar 

  90. Kiani JG, Saeed M, Parvez SH, et al. Association of G-protein beta-3 subunit gene (GNB3) T825 allele with Type II diabetes. Neuro Endocrinol Lett 2005; 26(2): 87–8

    PubMed  CAS  Google Scholar 

  91. Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet 2006; 7(10): 781–91

    Article  PubMed  CAS  Google Scholar 

  92. Sato Y, Suganami H, Hamada C, et al. Designing a multistage, SNP-based, genome screen for common diseases. J Hum Genet 2004; 49(12): 669–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by an unrestricted grant from Novo Nordisk BV and The Scientific Institute of Dutch Pharmacists (WinAP). Neither had influence over the design, conduct or interpretation of the results of the study.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozkurt, Ö., de Boer, A., Grobbee, D.E. et al. Pharmacogenetics of Glucose-Lowering Drug Treatment. Mol Diag Ther 11, 291–302 (2007). https://doi.org/10.1007/BF03256250

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256250

Keywords

Navigation