Skip to main content
Log in

Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The aim of our study was to determine which microsomal cytochrome P450 isozyme(s) were responsible for the microsomal oxidation of indole to indoxyl, an important intermediate in the information of the uremic toxin indoxyl sulfate. Indole was incubated together with an NADPH — generating system and rat liver microsomes. Formation of indigo, an auto-oxidation product of indoxyl, was used to determine the indole-3-hydroxylation activity. Apparent Km and Vmax values of 0.85 mM and 1152 pmol min−1 mg−1 were calculated for the formation of indoxyl from indole using rat liver microsomes. The effects of various potential inducers and inhibitors on the metabolism of indole to indoxyl by rat liver microsomes were studied to elucidate the enzymes responsible for metabolism. Studies with general and isozyme-specific P450 inhibitors demostrated that P450 enzymes and not FMO are responsible for the formation of indoxyl. In the induction studies, rate of indoxyl formation in the microsomes from untreated vs induced rats correlated nearly exactly with the CYP2E1 activity (4-nitrophenol 2-hydroxylation). These results suggests that CYP2E1 is the major isoform for the microsomal oxidation of indole to indoxyl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryan G.T. (1971): The role of urinary tryptophan metabolites in the etiology of bladder cancer. Am. J. Clin. Nutt., 24, 841–847.

    CAS  Google Scholar 

  2. Dunning W.F., Curtis M.R. (1958): The role of indole in incidence of 2-acetylaminofluorene-induced bladder cancer in rats. Proc. Soc. Exp. Biol. Med., 99, 91–95.

    PubMed  CAS  Google Scholar 

  3. Oyasu R., Kitajima T., Hopp M.L., Sumie H. (1972): Enhancement of urinary bladder tumorigenesis in hamsters by coadministration of 2-acetylaminofluorene and indole. Cancer Res., 32, 2027–2033.

    PubMed  CAS  Google Scholar 

  4. Sims J., Renwick A.G. (1983): The effects of saccharin on the metabolism of dietary tryptophan to indole, a known cocarcinogen for the urinary bladder of the rat. Toxicol. Appl. Pharmacol., 67, 132–151.

    Article  PubMed  CAS  Google Scholar 

  5. Lawrie C.A., Renwick A.G., Sims J. (1985): The urinary excretion of bacterial amino-acid metabolites by rats fed saccharin in the diet. Food Chem. Toxicol., 23, 445–450.

    Article  PubMed  CAS  Google Scholar 

  6. Niwa T., Nomura T., Sugiyama S., Miyazaki T., Tsukushi S., Tsutsui S. (1997): The protein metabolite hypothesis, a model for the progression of renal failure: an oral adsorbent lowers indoxyl sulfate levels in undialyzed uremic patients. Kidney Int. Suppl., 62, S23-S28.

    PubMed  CAS  Google Scholar 

  7. Niwa T., Aoyama I., Takayama F., Tsukushi S., Miyazaki T., Owada A., Shiigai T. (1999): Urinary indoxyl sulfate is a clinical factor that affects the progression of renal failure. Miner Electrolyte Metab., 25, 118–122.

    Article  PubMed  CAS  Google Scholar 

  8. Miyazaki T., Aoyama I., Ise M., Seo H., Niwa T. (2000): An oral sorbent reduces overload of indoxyl sulphate and gene expression of TGF-betal in uraemic rat kidneys. Nephrol. Dial. Transplant, 15, 1773–1781.

    Article  PubMed  CAS  Google Scholar 

  9. Stanfel L.A., Gulyassy P.F., Jarrard E.A. (1986): Determination of indoxyl sulfate in plasma of patients with renal failure by use of ionpairing liquid chromatography. Clin. Chem., 32, 938–942.

    PubMed  CAS  Google Scholar 

  10. Niwa T., Ise M., Miyazaki T. (1994): Progression of glomerular sclerosis in experimental uremic rats by administration of indole, a precursor of indoxyl sulfate. Am. J. Nephrol., 14, 207–212.

    Article  PubMed  CAS  Google Scholar 

  11. Parkinson A. (1996): Biotransformation of xenobiotics. In: Klaasen C.D. (ed). Casarett and Doull's Toxicology. New York: McGraw-Hill, 113–186.

    Google Scholar 

  12. Wong L.L. (1998): Cytochrome P450 monooxygenases. Curr. Opin. Chem. Biol., 2, 263–268.

    Article  PubMed  CAS  Google Scholar 

  13. Guengerich F.P. (1991): Oxidation of toxic and carcinogenic chemicals by human cytochrome P450 enzymes. Chem. Res. Toxicol., 4, 391–407.

    Article  PubMed  CAS  Google Scholar 

  14. Lieber C.S. (1997): Cytochrome P4502E1. Its physiological and pathological role. Physiol. Rev., 77, 517–544.

    PubMed  CAS  Google Scholar 

  15. Gillam E.M.J., Aguinaldo A.M.A., Notley L.M., Kim D., Mundkowski R.G., Volkov A.A., Arnold F.H., Soucek P., DeVoss J.J., Guengerich F.P. (1999): Formation of indigo by recombinant mammalian cytochrome P450. Biochem. Biophys. Res. Commun., 265, 469–472.

    Article  PubMed  CAS  Google Scholar 

  16. Gillam E.M.J., Notley L.M., Cai H., DeVoss J.J., Guengerich F.P. (2000): Oxidation of indole by cytochrome P450 enzymes. Biochem., 39, 13817–13824.

    Article  CAS  Google Scholar 

  17. Li Q.S., Schwaneberg U., Fischer P., Schmid R.D. (2000): Directed evolution of the fatty-acid hydroxlase P450 BM-3 into an indole-hydroxylating catalyst. Chemistry, 6, 1531–1535.

    Article  PubMed  CAS  Google Scholar 

  18. Ingelman-Sundberg M., Oscarson M., MccLellan R.A. (1999): Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol. Sci., 20, 342–49.

    Article  PubMed  CAS  Google Scholar 

  19. Turesky R.J., Lang N.P., Butler M.A., Teitel C.H., Kadlubar F.F. (1991): Metabolic activation of carcinogenic heterocyclic amines by human liver and colon. Carcinogenesis, 12, 1839–1845.

    Article  PubMed  CAS  Google Scholar 

  20. Russel G.A., Kaupp G. (1969): Oxidation of carbanions. IV. Oxidation of indoxyl to indigo in basic solution. J. Am. Chem. Soc., 91, 3851–3859.

    Article  Google Scholar 

  21. Gorrod J.W., Patterson L.H. (1983): The metabolism of 4-substituted N-ethyl-N-methylanilines III. Effect of various potential inhibitors, activators and inducers on α-C- and N-oxidation. Xenobiotica, 13, 521–529.

    Article  PubMed  CAS  Google Scholar 

  22. Tierney D.J., Haas A.L., Koop D.R. (1992): Degradation of cytochrome P-4502E1: Selective loss after labilization of the enzyme. Arch. Biochem. Biophys., 293, 9–16.

    Article  PubMed  CAS  Google Scholar 

  23. Koop D.R. (1992): Hydroxylation of p-nitrophenol by rabbit ethanol-inducible cytochrome P450 isozyme 3a. Mol. Pharmacol., 29, 399–404.

    Google Scholar 

  24. Perella F.W. (1988): A practical curve-fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers. Anal. Biochem., 174, 437–447.

    Article  Google Scholar 

  25. Grothusen A., Hardt J., Brautigam L., Lang D., Bocker R. (1996): A convenient method to discriminate between cytochrome P450 enzymes and flavin-containing monooxyenases in human liver microsomes. Arch. Toxicol., 71, 64–71.

    Article  PubMed  CAS  Google Scholar 

  26. Chen T.S., Dubois K.P. (1973): Studies on the enzyme inducing effect of polychlorinated biphenyls. Toxicol. Appl. Pharmacol., 26, 504–512.

    Article  CAS  Google Scholar 

  27. Okey A.B. (1990): Enzyme induction in the cytochrome P450 system. Pharmacol. Ther., 45, 241–298.

    Article  PubMed  CAS  Google Scholar 

  28. Ryan D.E., Ramanathan L., Iida S., Thomas P.E., Haniu M., Shively J.E., Lieber C.S., Levin W. (1985): Characterization of a major form of rat hepatic microsomal cytochrome P450 induced by isoniazid. J. Biol. Chem., 260, 6385–6393.

    PubMed  CAS  Google Scholar 

  29. Song B.J., Veech R.L., Saenger P. (1990): Cytochrome P450IIE1 is elevated in lymphocytes from poorly controlled insulin-dependent diabetics. J. Clin. Endocrinol. Metab., 71, 1036–1040.

    Article  PubMed  CAS  Google Scholar 

  30. Wang T., Shankar K., Ronis M.J., Mehendale H.M. (2000): Potentiation of thioacetamide liver injury in diabetic rats is due to induced CYP2E1. J. Pharmacol. Exp. Ther., 294, 473–479.

    PubMed  CAS  Google Scholar 

  31. Yoo J.S.H., Yang C.S. (1985): Enzyme specificity in the metabolic activation of N-nitrosodimethylamine to a mutagen for Chinese hamster V79 cells. Cancer Res., 45, 5569–5574.

    PubMed  CAS  Google Scholar 

  32. Gonzales F.J. (1989): The modecular biology of P450s. Pharmacol. Rev., 40, 243–288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banoglu, E., Jha, G.G. & King, R.S. Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur. J. Drug Metab. Pharmacokinet. 26, 235–240 (2001). https://doi.org/10.1007/BF03226377

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03226377

Keywords

Navigation