Skip to main content
Log in

A simulation method for modeling the morphology and characteristics of electrospun polymeric nanowebs

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We developed an algorithm to simulate the generation of virtual nanowebs using the Monte Carlo method. To evaluate the pore size of the simulated multi-layered nanoweb, an estimation algorithm was developed using a ghost particle having zero volume and mass. The penetration time of the ghost particle through the virtual nanoweb was dependent on the pore size. By using iterative ghost particle penetrations, we obtained reliable data for the evaluation of the pore size and distribution of the virtual nanowebs. The penetration time increased with increasing number of layers and area ratio, whereas it decreased with increasing fiber diameter. Dimensional analysis showed that the penetration time can be expressed as a function of the fiber diameter, area ratio and number of layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Doshi and D. H. Reneker,J. Electrostatics,35, 151 (1995).

    Article  CAS  Google Scholar 

  2. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin,Polymer,40, 7397 (1999).

    Article  CAS  Google Scholar 

  3. S. M. Jo, W. S. Lee, and C. W. Joo,Fiber Technol. Indust.,6, 61 (2002).

    Google Scholar 

  4. J. M. Deitzel, J. Kleinmeyer, D. Harrks, and N. C. B. Tan,Polymer,42, 261 (2001).

    Article  CAS  Google Scholar 

  5. S. G. Lee, S. S. Choi, and C. H. Joo,J. Korea Fiber Soc.,39, 1 (2002).

    CAS  Google Scholar 

  6. Y. S. Kang, H. Y. Kim, Y. J. Ryu, D. R. Lee, and S. J. Pack,Polymer(Korea),26, 360 (2002).

    CAS  Google Scholar 

  7. K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, and S. W. Choi,J. Polym. Sci.; Part B: Polym. Phys.,41, 1256 (2003).

    Article  CAS  Google Scholar 

  8. A. Pedicini and R. J. Farris,Polymer,44, 6857 (2003).

    Article  CAS  Google Scholar 

  9. R. Dersch, T. Liu, A. K. Schaper, A. Greiner, and J. H. Wendoff,Fiber Soc. Fall Technical Meeting, 54ba](2002).

  10. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna,Composite Sci. Technol.,63, 2223 (2003).

    Article  CAS  Google Scholar 

  11. B. Ding, C. K. Kim, H. K. Kim, M. K. Seo, and S. J. Park,Fiber and Polymers,5, 105 (2004).

    Article  CAS  Google Scholar 

  12. K. W. Kim, K. H. Lee, M. S. Khil, Y. S. Ho, and H. K. Kim,Fiber and Polymers,5, 122 (2004).

    Article  CAS  Google Scholar 

  13. P. W. Atkins,Physical Chemistry, 6th ed., Oxford University Press, Oxford, UK, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Kim, DW., Seo, M.H. et al. A simulation method for modeling the morphology and characteristics of electrospun polymeric nanowebs. Macromol. Res. 13, 107–113 (2005). https://doi.org/10.1007/BF03219023

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03219023

Keywords

Navigation