Skip to main content
Log in

Effect of natural fiber surface treatments on the interfacial and mechanical properties of henequen/polypropylene biocomposites

  • Communications
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The surfaces of henequen fibers, which can be obtained from the leaves of agave plants, were treated with two different media, tap water and sodium hydroxide, that underwent both soaking and ultrasonic methods for the fiber surface treatment. Various biocomposites were fabricated with untreated and treated, chopped henequen fibers and polypropylene using a compression molding method. The result is discussed in terms of interfacial shear strength, flexural properties, dynamic mechanical properties, and fracture surface observations of the biocomposites. The soaking (static method) and ultrasonic (dynamic method) treatments with tap water and sodium hydroxide at different concentrations and treatment times significantly influenced the interfacial, flexural and dynamic mechanical properties of henequen/polypropylene biocomposites. The alkali treatment was more effective than the water treatment in improving the interfacial and mechanical properties of randomly oriented, chopped henequen/PP biocomposites. In addition, the application of the ultrasonic method to each treatment was relatively more effective in increasing the properties than the soaking method, depending on the treatment medium and condition. The greatest improvement in the properties studied was achieved by ultrasonic alkalization of natural fibers, which was in agreement with the other results of interfacial shear strength, flexural strength and modulus, storage modulus, and fracture surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. K. Mohanty, M. Misra, and G. Hinrichsen,Macromol. Mater. Eng.,276/277, 1 (2000).

    Article  CAS  Google Scholar 

  2. D. Cho, S. G. Lee, W. H. Park, and S. O. Han,Polym. Sci. Technol.,13, 460 (2002).

    CAS  Google Scholar 

  3. A. K. Rana, A. Mandal, and S. Bandyopadhyay,Compos. Sci. Technol.,63, 801 (2003).

    Article  CAS  Google Scholar 

  4. T. Nishino, K. Hirao, M. Kotera, K. Nakamae, and H. Inagaki,Compos. Sci. Technol.,63, 1281 (2003).

    Article  CAS  Google Scholar 

  5. L. M. Arzondo, C. J. Perez, and J. M. Carella,Polym. Eng. Sci.,45, 613 (2005).

    Article  CAS  Google Scholar 

  6. K. C. M. Nair, S. Thomas, and G. Groeninckx,Compos. Sci. Technol.,61, 2519 (2001).

    Article  Google Scholar 

  7. Y. Pang, D. Cho, S. O. Han, and W. H. Park,Macromol. Res.,13, 453 (2005).

    Article  CAS  Google Scholar 

  8. G. C. Yang, H. M. Zeng, and J. J. Li,Fiber Reinf. Plastics Compos.,3, 12 (1997).

    Google Scholar 

  9. M. Aguilar-Vega and C. A. Cruz-Ramos,J. Appl. Polym. Sci.,58, 1245 (1995).

    Article  Google Scholar 

  10. G. Canche-Escamillar, J. Rodriguez-Laviada, J. I. Cauich-Cupul, E. Mendizabal, J. E. Puig, and P. J. Herrera-Franco,Composites Part A,33, 539 (2002).

    Article  Google Scholar 

  11. P. J. Herrera-Franco and A. Valadez-Gonzalez,Composites Part B,36, 597 (2005).

    Google Scholar 

  12. S. O. Han, D. Cho, W. H. Park, and L. T. Drzal,Compos. Interfaces,12(2/3), 231 (2006).

    Article  Google Scholar 

  13. C. K. Kum, Y. T. Sung, and Y. S. Kim,et al., Macromol. Res.,15, 308 (2007).

    Article  CAS  Google Scholar 

  14. J. C. Kim and J. H. Chang,Macromol. Res.,15, 449 (2007).

    Article  CAS  Google Scholar 

  15. A. C. N. Singleton, C. A. Baillie, P. W. R. Beaumont, and T. Peijs,Composites Part B,34, 519 (2003).

    Article  Google Scholar 

  16. A. K. Mohanty, M. Misra, and L. T. Drzal,Compos. Interfaces,8, 313 (2001).

    Article  CAS  Google Scholar 

  17. L. Y. Mwaikambo and M. P. Ansell,Die Angew. Makromol. Chem.,272, 108 (1999).

    Article  CAS  Google Scholar 

  18. S. Joseph, M. S. Sreekala, Z. Oommen, P. Koshy, and S. Thomas,Compos. Sci. Technol.,62, 1857 (2002).

    Article  CAS  Google Scholar 

  19. A. Arbelaiz, G. Cantero, B. Fernandez, I. Mondragon, R. Ganan, and J. M. Kenny,Polym. Compos.,26, 324 (2005).

    Article  CAS  Google Scholar 

  20. S.-H. Lee and S. Wang,Composites Part A,37, 80 (2006).

    Article  CAS  Google Scholar 

  21. X. Yuan, K. Jayaraman, and D. Bhattacharyya,J. Adhesion Sci. Technol.,18, 1027 (2004).

    Article  CAS  Google Scholar 

  22. D. Cho, S. M. Lee, S. G. Lee, and W. H. Park,Am. J. Appl. Sci., Special Issue (Bio-compat. Bio-compos. Mater.), 17 (2006).

  23. (23) R. P. Brown, Ed.,Handbook of Plastics Test Methods, 3rd Ed., Longman Scientific & Technical, London, 1998, Chapter 8.

    Google Scholar 

  24. D. Cho, S. B. Yoon, J. M. Seo, S. O. Han, and W. H. Park,Proc. (CD) 12 th Int’l Conf. Compos. Eng./Nano (ICCE-12), August 1-6, Tenerife, Spain, 2005.

  25. J. M. Seo, D. Cho, W. H. Park, S. O. Han, T. W. Hwang, C. H. Choi, S. J. Jung, and C. S. Lee,J. Biobased Mater. Bioenergy,1, 331 (2007).

    Article  Google Scholar 

  26. M. Z. Rong, M. Q. Zhong, Y. Liu, G. G. Yang, and H. M. Zheng,Compos. Sci. Technol.,61, 1437 (2001).

    Article  CAS  Google Scholar 

  27. A. O’Donnell, M. A. Dweib, and R. P. Wool,Compos. Sci. Technol.,64, 1135 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghwan Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.S., Cho, D. & Han, S.O. Effect of natural fiber surface treatments on the interfacial and mechanical properties of henequen/polypropylene biocomposites. Macromol. Res. 16, 411–417 (2008). https://doi.org/10.1007/BF03218538

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218538

Keywords

Navigation