Skip to main content
Log in

Nano-C60 and hydroxylated C60: Their impacts on the environment

  • Original Paper
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Because of their broad applications, nanoparticles became “the next big thing” throughout the industry. C60 belongs to a family of fullerenes. With increasing affordability and availability, fullerenes are already used in many consumer products and under extensive studies to be used in more products. As such, there is an increased risk of releasing fullerenes into the environment. C60 forms colloidal aggregates (nano-C60) upon contact with water, which can interact with biological systems. Some derivatized C60 can form colloidal aggregates of various sizes in water, depending on the surface chemistry. Recently, there were controversies on the toxicities of water suspensions of fullerenes and their derivatives and the mechanisms underlying their toxicities. Before discussing potential benefits of nanotechnology, it is important to correctly assess the risks and determine the impacts. In this review, we focus on controversies on the toxicities of nano-C60 and hydroxylated C60 and their potential risks on biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banfield, J. F. & Navrotsky, A. inNanoparticles and the Environment (Mineral Society of America, Washington, D.C., 2001).

    Google Scholar 

  2. Daniel, M. C. & Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology.Chemical Reviews 104, 293–346 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. Engheta, N. Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials.Science 317, 1698–1702 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. Da Ros, T. & Prato, M. Medicinal chemistry with fullerenes and fullerene derivatives.Chemical Communications 8, 663–669 (1999).

    Article  Google Scholar 

  5. Gonzalez, K. A., Wilson, L. J., Wu, W. & Nancollas, G. H. Synthesis andin vitro characterization of a tissue-selective fullerene: Vectoring C60(OH)16 AMBP to mineralized bone.Bioorg Med Chem 10, 1991–1997 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel.Science 311, 622–627 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. Anderson, N. A. & Lian, T. Q. Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface.Annual Review of Physical Chemistry 56, 491–519 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. Oberdörster, G., Oberdörster, E. & Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles.Environ Health Perspect 113, 823–839 (2005).

    Article  PubMed  Google Scholar 

  9. Klaine, S. J.et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects.Environmental Toxicology and Chemistry 27, 1825–1851 (2008).

    Article  PubMed  CAS  Google Scholar 

  10. The United Nations Educational, Scientific, and Cultural Organization. The Ethics and Politics of Nanotechnology. UNESCO (2006).

  11. Moussa, F.et al. The influence of C60 powders on cultured human-leukocytes.Fullerene Science and Technology 3, 333–342 (1995).

    CAS  Google Scholar 

  12. Tsuchiya, T., Oguri, I., Yamakoshi, Y. N. & Miyata, N. Novel harmful effects of [60]fullerene on mouse embryosin vitro andin vivo.FEBS Lett 393, 139–145 (1996).

    Article  PubMed  Google Scholar 

  13. Yang, X. L., Fan, C. H. & Zhu, H. S. Photo-induced cytotoxicity of malonic acid [C60] fullerene derivatives and its mechanism.Toxicol In Vitro 16, 41–46 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. Oberdörster, G., Stone, V. & Donaldson, K. Toxicology of nanoparticles: A historical perspective.Nanotoxicology 1, 2–25 (2007).

    Article  Google Scholar 

  15. Chen, Z.et al. Toxicological and biological effects of nanomaterials.International Journal of Nanotechnology 4, 179–196 (2007).

    Article  CAS  Google Scholar 

  16. Nanotechnology Consumer Products Inventory, http:// www.nanotechproject.org/inventories/consumer/browse /products/yonex_nanospeed_rq_tennis_racquets (2009).

  17. Vitamin C60 Corporation, Antioxidant Face Cream, http://www.vC60.com/english/index.html (2009).

  18. Osawa, E. Superaromacity.Kagaku (Kyoto) 25, 854–863 (1970).

    CAS  Google Scholar 

  19. Bochvar, D. A. & Galpern, E. G. Hypothetical systems-Carbododecahedron, S-Icosahedrone and carbo-S-Icosahedron.Doklady Akademii Nauk Sssr 209, 610–612 (1973).

    CAS  Google Scholar 

  20. Kroto, H. W.et al. C60-Buckminsterfullerene.Nature 318, 162–163 (1985).

    Article  CAS  Google Scholar 

  21. Parasuk, V. & Almlof, J. C20-the smallest fullerene.Chemical Physics Letters 184, 187–190 (1991).

    Article  CAS  Google Scholar 

  22. Diederich, F. & Whetten, R. L. Beyond C60-The higher fullerenes.Accounts of Chemical Research 25, 119–126 (1992).

    Article  CAS  Google Scholar 

  23. Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter.Nature 363, 603–605 (1993).

    Article  CAS  Google Scholar 

  24. Becker, L., Poreda, R. J. & Bunch, T. E. Fullerenes: An extraterrestrial carbon carrier phase for noble gases.Proc Natl Acad Sci U S A 97, 2979–2983 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. Dai, L. M., Mau, A. W. H. & Zhang, X. Q. Synthesis of fullerene- and fullerol-containing polymers.Journal of Materials Chemistry 8, 325–330 (1998).

    Article  CAS  Google Scholar 

  26. Withers, J. C., Loutfy, R. O. & Lowe, T. P. Fullerene commercial vision.Fullerene Science and Technology 5, 1–31 (1997).

    Google Scholar 

  27. Vul, A. Y. & Huffman, D. R. Fullerene applications: The first steps from dreams to reality.Molecular Crystals and Liquid Crystals Science and Technology Section C-Molecular Materials 10, 37–46 (1998).

    CAS  Google Scholar 

  28. Gao, Y. Y.et al. Efficient photocleavage of DNA utilizing water soluble riboflavin/naphthaleneacetate substituted fullerene complex.Journal of Photochemistry and Photobiology a-Chemistry 203, 105–111 (2009).

    Article  CAS  Google Scholar 

  29. Sitharaman, B.et al. Water-soluble fullerene (C60) derivatives as nonviral gene-delivery vectors.Mol Pharm 5, 567–578 (2008).

    Article  PubMed  CAS  Google Scholar 

  30. Venkatesan, N.et al. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics.Biomaterials 26, 7154–7163 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. Zhu, Z. W., Schuster, D. I. & Tuckerman, M. E. Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease.Biochemistry 42, 1326–1333 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. Wilson, L. J.et al. Metallofullerene drug desigh 199–207 (1999).

  33. Bosi, S.et al. Synthesis and anti-HIV properties of new water-soluble bis-functionalized[60]fullerene derivatives.Bioorg Med Chem Lett 13, 4437–4440 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. Bummer, P. M. Physical chemical considerations of lipid-based oral drug delivery-Solid lipid nanoparticles.Critical Reviews in Therapeutic Drug Carrier Systems 21, 1–19 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. Alargova, R. G., Deguchi, S. & Tsujii, K. Stable colloidal dispersions of fullerenes in polar organic solvents.Journal of the American Chemical Society 123, 10460–10467 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. Andrievsky, G. V., Klochkov, V. K., Karyakina, E. L. & Mchedlov-Petrossyan, N. O. Studies of aqueous colloidal solutions of fullerene C60 by electron microscopy.Chemical Physics Letters 300, 392–396 (1999).

    Article  CAS  Google Scholar 

  37. Cheng, X. K., Kan, A. T. & Tomson, M. B. Naphthalene adsorption and desorption from Aqueous C60 fullerene.Journal of Chemical and Engineering Data 49, 675–683 (2004).

    Article  CAS  Google Scholar 

  38. Deguchi, S., Alargova, R. G. & Tsujii, K. Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization.Langmuir 17, 6013–6017 (2001).

    Article  CAS  Google Scholar 

  39. Fortner, J. D.et al. C60 in water: Nanocrystal formation and microbial response.Environmental Science & Technology 39, 4307–4316 (2005).

    Article  CAS  Google Scholar 

  40. Baun, A.et al. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60.Aquatic Toxicology 86, 379–387 (2008).

    Article  PubMed  CAS  Google Scholar 

  41. Roberts, J. E.et al. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells.Toxicology and Applied Pharmacology 228, 49–58 (2008).

    Article  PubMed  CAS  Google Scholar 

  42. Oberdörster, E. Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass.Environmental Health Perspectives 112, 1058–1062 (2004).

    Article  PubMed  Google Scholar 

  43. Zhu, J. D.et al. Tumor-inhibitory effect and immunomodulatory activity of fullerol C60(OH)(x).Small 4, 1168–1175 (2008).

    Article  PubMed  CAS  Google Scholar 

  44. Lyon, D. Y., Brown, D. A. & Alvarez, P. J. Implications and potential applications of bactericidal fullerene water suspensions: Effect of nC60 concentration, exposure conditions and shelf life.Water Sci Technol 57, 1533–1538 (2008).

    Article  PubMed  CAS  Google Scholar 

  45. Wang, Z. & Yang, S. Effects of fullerenes on phospholipid membranes: A langmuir monolayer study.Chemphyschem DOI: 10.1002/cphc.200900328 (2009).

  46. Rincon, M. E., Hu, H., Campos, J. & Ruiz-Garcia, J. Electrical and optical properties of fullerenol Langmuir-Blodgett films deposited on polyaniline substrates.Journal of Physical Chemistry B 107, 4111–4117 (2003).

    Article  CAS  Google Scholar 

  47. Hinokuma, K. & Ata, M. Fullerene proton conductors.Chemical Physics Letters 341, 442–446 (2001).

    Article  CAS  Google Scholar 

  48. Chiang, L. Y.et al. Efficient synthesis of polyhydroxylated fullerene derivatives via hydrolysis of polycyclosulfated precursors.Journal of Organic Chemistry 59, 3960–3968 (1994).

    Article  CAS  Google Scholar 

  49. Chiang, L. Y., Upasani, R. B. & Swirczewski, J. W. Versatile nitronium chemistry for C60 fullerene functionalization.Journal of the American Chemical Society 114, 10154–10157 (1992).

    Article  CAS  Google Scholar 

  50. Isakovic, A.et al. Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene.Toxicological Sciences 91, 173–183 (2006).

    Article  PubMed  CAS  Google Scholar 

  51. Calvo, P.et al. Polyester nanocapsules as new topical ocular delivery systems for cyclosporin A.Pharmaceutical Research 13, 311–315 (1996).

    Article  PubMed  CAS  Google Scholar 

  52. Sayes, C. M.et al. The differential cytotoxicity of water-soluble fullerenes.Nano Letters 4, 1881–1887 (2004).

    Article  CAS  Google Scholar 

  53. Sayes, C. M.et al. Nano-C60 cytotoxicity is due to lipid peroxidation.Biomaterials 26, 7587–7595 (2005).

    Article  PubMed  CAS  Google Scholar 

  54. Dugan, L. L.et al. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons.Neurobiol Dis 3, 129–135 (1996).

    Article  PubMed  CAS  Google Scholar 

  55. Jin, H.et al. Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents.J Neurosci Res 62, 600–607 (2000).

    Article  PubMed  CAS  Google Scholar 

  56. Yin, J. J.et al. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials.Biomaterials 30, 611–621 (2009).

    Article  PubMed  CAS  Google Scholar 

  57. Irie, K.et al. Photocytotoxicity of water-soluble fullerene derivatives.Biosci Biotechnol Biochem 60, 1359–1361 (1996).

    Article  PubMed  CAS  Google Scholar 

  58. Arbogast, J. W.et al. Photophysical properties of C60.J Phys Chem 95, 11–12 (1991).

    Article  CAS  Google Scholar 

  59. Vileno, B.et al. Spectroscopic and photophysical properties of a highly derivatized C60 fullerol.Advanced Functional Materials 16, 120–128 (2006).

    Article  CAS  Google Scholar 

  60. Badireddy, A. R.et al. Inactivation of Bacteriophages via photosensitization of fullerol nanoparticles.Environmental Science & Technology 41, 6627–6632 (2007).

    Article  CAS  Google Scholar 

  61. DeRosa, M. C. & Crutchley, R. J. Photosensitized singlet oxygen and its applications.Coord Chem Rev 233, 351–371 (2002).

    Article  Google Scholar 

  62. Nagano, T.et al. Comparison of singlet oxygen production efficiency of C60 with other photosensitizers, based on 1268 nm emission.Chem Pharm Bull (Tokyo) 42, 2291–2294 (1994).

    CAS  Google Scholar 

  63. Nakajima, N., Nishi, C., Li, F. M. & Ikada, Y. Photoinduced cytotoxicity of water-soluble fullerene.Fullerene Sci Technol 4, 1–19 (1996).

    CAS  Google Scholar 

  64. Xia, T.et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm.Nano Lett 6, 1794–1807 (2006).

    Article  PubMed  CAS  Google Scholar 

  65. Isobe, H.et al. Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates.Angew Chem, Int Ed 45, 6676–6680 (2006).

    Article  CAS  Google Scholar 

  66. Brant, J. A., Labille, J., Bottero, J. Y. & Wiesner, M. R. Characterizing the impact of preparation method on fullerene cluster structure and chemistry.Langmuir 22, 3878–3885 (2006).

    Article  PubMed  CAS  Google Scholar 

  67. Hotze, E. M., Labille, J., Alvarez, P. & Wiesner, M. R. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water.Environ Sci Technol 42, 4175–4180 (2008).

    Article  PubMed  CAS  Google Scholar 

  68. Lyon, D. Y. & Alvarez, P. J. Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation.Environ Sci Technol 42, 8127–8132 (2008).

    Article  PubMed  CAS  Google Scholar 

  69. Lyon, D. Y.et al. Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage.Nano Lett 8, 1539–1543 (2008).

    Article  PubMed  CAS  Google Scholar 

  70. Lee, J., Fortner, J. D., Hughes, J. B. & Kim, J. H. Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation.Environ Sci Technol 41, 2529–2535 (2007).

    Article  PubMed  CAS  Google Scholar 

  71. Pickering, K. D. & Wiesner, M. R. Fullerol-sensitized production of reactive oxygen species in aqueous solution.Environmental Science & Technology 39, 1359–1365 (2005).

    Article  CAS  Google Scholar 

  72. Yamago, S.et al. In vivo biological behavior of a water-miscible fullerene:14C labeling, absorption, distribution, excretion and acute toxicity.Chem Biol 2, 385–389 (1995).

    Article  PubMed  CAS  Google Scholar 

  73. Kolosnjaj, J., Szwarc, H. & Moussa, F. Toxicity studies of fullerenes and derivatives.Adv Exp Med Biol 620, 168–180 (2007).

    Article  PubMed  Google Scholar 

  74. Sera, N., Tokiwa, H. & Miyata, N. Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides.Carcinogenesis 17, 2163–2169 (1996).

    Article  PubMed  CAS  Google Scholar 

  75. Rajagopalan, P., Wudl, F., Schinazi, R. F. & Boudinot, F. D. Pharmacokinetics of a water-soluble fullerene in rats.Antimicrob Agents Chemother 40, 2262–2265 (1996).

    PubMed  CAS  Google Scholar 

  76. Kamat, J. P.et al. Oxidative damage induced by the fullerene C60 on photosensitization in rat liver microsomes.Chem Biol Interact 114, 145–159 (1998).

    Article  PubMed  CAS  Google Scholar 

  77. Lyon, D. Y.et al. Bacterial cell association and antimicrobial activity of a C60 water suspension.Environmental Toxicology and Chemistry 24, 2757–2762 (2005).

    Article  PubMed  CAS  Google Scholar 

  78. Lyon, D. Y., Adams, L. K., Falkner, J. C. & Alvarez, P. J. J. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size.Environmental Science & Technology 40, 4360–4366 (2006).

    Article  CAS  Google Scholar 

  79. Brant, J., Lecoanet, H. & Wiesner, M. R. Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems.J Nanoparticle Res 7, 545–553 (2005).

    Article  CAS  Google Scholar 

  80. Lee, J., Yamakoshi, Y., Hughes, J. B. & Kim, J. H. Mechanism of C60 photoreactivity in water: Fate of triplet state and radical anion and production of reactive oxygen species.Environ Sci Technol 42, 3459–3464 (2008).

    Article  PubMed  CAS  Google Scholar 

  81. Aoshima, H.et al. Antimicrobial Activity of fullerenes and their hydroxylated derivatives.Biocontrol Science 14, 69–72 (2009).

    Article  PubMed  CAS  Google Scholar 

  82. Lecoanet, H. F. & Wiesner, M. R. Velocity effects on fullerene and oxide nanoparticle deposition in porous media.Environmental Science & Technology 38, 4377–4382 (2004).

    Article  CAS  Google Scholar 

  83. Boxall, A. B., Tiede, K. & Chaudhry, Q. Engineered nanomaterials in soils and water: How do they behave and could they pose a risk to human health?Nanomedicine 2, 919–927 (2007).

    Article  PubMed  CAS  Google Scholar 

  84. Lovern, S. B. & Klaper, R.Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles.Environ Toxicol Chem 25, 1132–1137 (2006).

    Article  PubMed  CAS  Google Scholar 

  85. Usenko, C. Y., Harper, S. L. & Tanguay, R. L. Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish.Toxicol Appl Pharmacol 229, 44–55 (2008).

    Article  PubMed  CAS  Google Scholar 

  86. Zhu, S. Q., Oberdörster, E. & Haasch, M. L. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow.Marine Environmental Research 62, S5-S9 (2006).

    Article  PubMed  CAS  Google Scholar 

  87. Spohn, P.et al. C60 fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays.Environ Pollut 157, 1134–1139 (2009).

    Article  PubMed  CAS  Google Scholar 

  88. Gao, J.et al. Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: Effects of water chemical composition.Environ Sci Technol 43, 3322–3328 (2009).

    Article  PubMed  CAS  Google Scholar 

  89. Lee, J. M.et al. presented at the The 9th International Congress on Cell Biology, Seoul, Korea, 2008 (unpublished).

  90. Sayes, C. M., Marchione, A. A., Reed, K. L. & Warheit, D. B. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: Few differences in fullerene toxicityin vivo in contrast toin vitro profiles.Nano Letters 7, 2399–2406 (2007).

    Article  PubMed  CAS  Google Scholar 

  91. Folkmann, J. K.et al. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes.Environ Health Perspect 117, 703–708 (2009).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonhee Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, H., Wang, CU. & Jang, W. Nano-C60 and hydroxylated C60: Their impacts on the environment. Toxicol. Environ. Health. Sci. 1, 132–139 (2009). https://doi.org/10.1007/BF03216475

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03216475

Keywords

Navigation