Skip to main content
Log in

Potential dose-conformity advantages with multi-source intensity-modulated brachytherapy (IMBT)

  • Scientific Papers
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The possibilities for optimizing brachytherapy by including additional degrees of freedom in source design were investigated. This included examining optimised dose delivery with a brachytherapy source that can provide intensity-modulated dose delivery in angle about the source travel direction (to achieve intensity-modulated brachytherapy-IMBT). A prostate HDR case was selected as an example. An inverse planning algorithm was used to define how an asymmetric radiation source can be controlled in multiple source catheters to maximize tumour dose coverage and minimize urethral and rectal doses. Substantial improvements in conformity in terms of tumour coverage and urethral dose reduction could be achieved when conventional HDR source positioning was used with IMBT. With the objective definition used in the example however, rectal doses could not be improved over those delivered via conventional HDR. When source position was included as a variable in IMBT, significant conformity improvements result for all structures. IMBT would be a technically challenging form of therapy that would be strongly influenced by the type of sources that could be created for it. This study has shown however that there is a potential for improving dose conformity with such a therapy. Introduction of IMBT techniques would require conventional brachytherapy concepts to be radically modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sloboda, R. S., Pearcey, R. G., Gillan, S. J.Optimized low dose rate pellet configurations for intravaginal brachytherapy. Int J Radiat Oncol Biol Phys 1993; 26: 499–511.

    CAS  PubMed  Google Scholar 

  2. Kneschaurek, P., Schiessl, W., Wehrmann, R.Volume-based dose optimisation in brachytherapy. Int J Radiat Oncol Biol Phys 1999; 45: 811–815.

    CAS  PubMed  Google Scholar 

  3. Kolkman-Deurloo, I. K., Visser, A, G., Niel, C. G., Driver, N., Levendag, P. C.Optimisation of interstitial volume implants, Radioth Oncol 1994; 31: 229–239.

    Article  CAS  Google Scholar 

  4. Edmundson, G. K., Yan, D., Martinez, A. A.Intraoperative optimisation of needle placement and dwell times for conformal prostate brachytherapy. Int J Radiat Oncol Biol Phys 1995; 33: 1257–1263.

    CAS  PubMed  Google Scholar 

  5. Giannouli, S., Baltas, D., Milickovic, N., Lahanas, M., Kolotas, C., Zamboglou, N., Uzunoglu, N.Autoactivation of source dwell positions for HDR brachytherapy treatment planning. Med Phys 2000; 27: 2517–2520.

    Article  CAS  PubMed  Google Scholar 

  6. Sadegh, P., Mourtada, F. A., Taylor, R. H. Anderson, J. H.Brachytherapy optimal planning with application to intravascular therapy. Medical Image Analysis 1999; 3: 223–236.

    Article  CAS  PubMed  Google Scholar 

  7. Lessard, E., Pouliot, J.Inverse planning anatomy-based optimisation for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function. Med Phys 2001; 28: 773–779.

    Article  CAS  PubMed  Google Scholar 

  8. Cetingoz, R., Ataman, O. U., Tuncel, N., Sen, M., Kinay, M.Optimisation in high dose rate brachytherapy for uterovaginal applications. Radioth Oncol 2001; 58: 31–36.

    Article  CAS  Google Scholar 

  9. Messing, E. M., Zhang, J. B., Rubens, D. J., Brasacchio, R. A., Strang, J. G., Soni, A., Schell, M. C., Okunieff, P. G., Yu, Y.Intraoperative optimized inverse planning for prostate brachytherapy: early experience. Int J Radiat Oncol Biol Phys 1999; 44; 801–808.

    CAS  PubMed  Google Scholar 

  10. Lachance, B., Beliveau-Nadeau, D., Lessard, E., Chretien, M., Hsu, I. C., Pouliot, J., Beaulieu, L., Vigneault, E.Early clinical experience with anatomy-based inverse planning dose optimisation for high-dose-rate boost of the prostate. Int J Radiat Oncol Biol Phys 2002; 54: 86–100.

    PubMed  Google Scholar 

  11. Yang, G., Reinstein, L. E., Pai, S., Xu, Z., Carroll, D. L.A new genetic algorithm technique on optimisation of permanent 125 I prostate implants. Med Phys 1998; 25: 2308–2315.

    Article  CAS  PubMed  Google Scholar 

  12. Yu, Y., Zhang, J. B., Brasachio, R. A., Okunieff, P. G., Rubens, D. J., Strang, J. G., Soni, A., Messing, E. M.Automated treatment planning engine for prostate seed implant brachytherapy. Int J Radiat Oncol Biol Phys 1999; 43: 647–652.

    CAS  PubMed  Google Scholar 

  13. Lee, E. K., Gallagher, R. J., Silvern, D., Wuu, C. S., Zaider, M.Treatment planning for brachytherapy: an integer programming model, two computational approaches and experiments with permanent prostate implant planning. Phys Med Biol 1999; 44: 145–165.

    Article  CAS  PubMed  Google Scholar 

  14. Pouliot, J., Tremblay, D., Roy, J., Filice, S.Optimisation of permanent 125 I prostate implants using fast simulated annealing Int J Radiat Oncol Biol Phys 1996; 36: 711–720.

    Article  CAS  Google Scholar 

  15. Hetzel, H., Kamleitner, H., McCoy, M., Frommhold, H.Rectal shielding for a Selectron-ring applicator system (HDR and LDR-afterloading).Strahlen Onkol, 1987; 163: 782–786.

    CAS  Google Scholar 

  16. Sloboda, S., Wang, R.Combined experimental and Monte Carlo verification of 137 Cs brachytherapy plans for vaginal applicators. Phys Med Biol 1998; 43: 3495–3507.

    Article  CAS  PubMed  Google Scholar 

  17. Weeks, K. J., Montana, G. S., Bentel, G. G.Design of a plastic minicolpostat applicator with shields. Int J Radiat Oncol Biol Phys 1991; 21: 1045–1052.

    CAS  PubMed  Google Scholar 

  18. Kron, T., Haque, M., Foulkers, K., Jeraj, J.A flattening filter for brachytherapy skin irradiation. Phys Med Biol 2002; 47: 713–722.

    Article  PubMed  Google Scholar 

  19. Jeraj, R., Sarvary, A., Kron, T.Optimal flattening filter shape of a surface brachytherapy applicator. Phys Med Biol 2002; 47: 723–735.

    Article  PubMed  Google Scholar 

  20. Ebert, M. A.Possibilities for intensity-modulated brachytherapy: technical limitations on the use of non-isotropic sources. Phys Med Biol 2002; 47: 2495–2509.

    Article  CAS  PubMed  Google Scholar 

  21. Gierga, D. P., Shefer, R. E.Characterization of a soft x-ray source for intravascular radiation therapy. Int J Radiat Oncol Biol Phys 2001; 49: 847–857.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ebert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, M.A. Potential dose-conformity advantages with multi-source intensity-modulated brachytherapy (IMBT). Australas. Phys. Eng. Sci. Med. 29, 165–171 (2006). https://doi.org/10.1007/BF03178889

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178889

Key words

Navigation