Skip to main content
Log in

Characterization and solvent stable features of Strep-tagged purified recombinant lipase from thermostable and solvent tolerantBacillus sp. strain 42

  • Industrial Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

A 1.2 kb lipase gene (AY 78735) from solvent stable and thermostableBacillus sp. strain 42 was overexpressed in a heterologous system that allowed for an extensive characterization of its solvent stability and thermostability. An overexpression was achieved using pET51b vector withEscherichia coli host strain BL21(DE3)pLysS, in which optimum expression was at 22–24 h incubation at 37°C, with lipase activity reached at 80.0 U mL−1 (specific activity 160.0 U mg−1), after induction by 0.5 mM IPTG. This expression was 11.5 fold higher and superseded the pQE-30UA/M15 (pREP4) host-vector system, which only achieved at 17.0 U mL−1 (34.0 U mg−1). The fusion lipase contains N-terminal Strep-tag II affinity tag that in one step of purification, the lipase was purified to homogeneity using Strep-tag II agarose column. The lipase was purified at 1.3 fold and 70% recovery with the elution fraction gave a band of 43 kDa in SDS-PAGE. The purified fusion lipase was most active at 70°C and pH 8.0, and was stable in a broad pH range of 7–10. It showed hydrolysis preference towards olive, sunflower and corn oils. Based on solvent stability studies in 30 min pre-incubation in 25% v/v solvents with a shaking rate at 150 strokes per min, the purified Lip 42 showed a different residual activity profiles depending on solvents and temperatures. Lip 42 was found be stable in polar organic solvents such as DMSO, DMF, acetone, methanol, heptanol and octanol, which could make it as a potential biocatalyst for the use in industrial biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Fattah Y.R., Gaballa A.A. (2008). Identification and over-expression of a thermostable lipase fromGeobacillus thermoleovorans Toshki inEscherichia coli. Microbiol. Res., 163(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  • Bradford M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Buck M. (1998). Trifuoroethanol and colleagues cosolvents come of age. Recent studies with peptides and proteins. Q. Rev. Biophys., 31: 297–355.

    Article  CAS  PubMed  Google Scholar 

  • Eltaweel M.A., Rahman R.N.Z., Salleh A.B., Basri M. (2005). An organic solvent stable lipase fromBacillus sp. strain 42. Ann. Microbiol., 55 (3): 187–192.

    CAS  Google Scholar 

  • Fang Y., Lu Z., Lv F., Bie X., Liu S., Ding Z., Xu W. (2006). A newly isolated organic solvent tolerantStaphylococcus saprophyticus M36 produced organic solvent-stable lipase. Curr. Microbiol., 53 (6): 510–515.

    Article  CAS  PubMed  Google Scholar 

  • Frenken L.G.J., Bos J.W., Visser C., Muller W., Tommassen J., Verrips C.T. (1993). An accessory gene,lipB, required for the production of activePseudomonas glumae lipase. Mol. Microbiol., 9: 579–589.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda H., Kondo A., Noda H. (2001). Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng., 92 (5): 405–416.

    Article  CAS  PubMed  Google Scholar 

  • Gekko K., Timasheff S.N. (1981). Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry, 20 (16): 4677–4686.

    Article  CAS  PubMed  Google Scholar 

  • Gekko K., Ohmae E., Kameyama K., Takagi T. (1998). Acetonitrile-protein interactions: amino acid solubility and preferential solvation. Biochim. Biophys. Acta, 1387: 195–205.

    CAS  PubMed  Google Scholar 

  • Gerritse G., Hommes R.W.J., Quax W.J. (1998). Development of a lipase fermentation process that uses a recombinantPseudomonas alcaligenes strain. Appl. Environ. Microbiol., 64 (7): 2644–2651.

    CAS  PubMed  Google Scholar 

  • Gupta M., Batra R., Tyagi R., Sharma A. (1997). Polarity index: the guiding solvent parameter for enzyme stability in aqueous-organic cosolvent mixtures. Biotechnol. Prog., 13: 284–288.

    Article  CAS  Google Scholar 

  • Haki G.D., Rakshit S.K. (2003). Developments in industrially important thermostable enzymes: a review. Biores. Technol., 89: 17–34.

    Article  CAS  Google Scholar 

  • Hamada D., Goto Y. (2005). Alcohol and salt-induced partially folded intermediates. In: Buchner J., Kiefhaber T., Eds, Protein Folding Handbook, Vol. 2, Wiley-VCH, pp. 884–915.

  • Kamini N.R., Iefuji H. (2001). Lipase catalyzed methanolysis of vegetable oils in aqueous medium byCryptococcus spp. S-2. Process. Biochem., 37 (4): 405–410.

    Article  CAS  Google Scholar 

  • Karadzic I., Masui A., Zivkovic L.I., Fujiwara N. (2006). Purification and characterization of an alkaline lipase fromPseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J. Biosci. Bioeng., 102 (2): 82–89.

    Article  CAS  PubMed  Google Scholar 

  • Kita Y., Arakawa T., Lin T.-Y., Timasheff S.N. (1994). Contribution of the surface-free energy perturbation to protein-solvent interactions. Biochemistry, 33: 15178–15189.

    Article  CAS  PubMed  Google Scholar 

  • Klibanov A.M. (2001). Improving enzymes by using them in organic solvents. Nature, 409: 241–246.

    Article  CAS  PubMed  Google Scholar 

  • Krishna H.S., Haki G.D., Rakshit S.K. (2002). Developments and trends in enzyme catalysis in nonconventional media. Biotechnol. Adv., 20 (3): 239–267.

    Article  PubMed  Google Scholar 

  • Kwon D.K., Rhee J.S. (1986). A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. J. Am. Oil Chem. Soc., 63: 89–92, doi: 10.1007/BF02676129.

    Article  CAS  Google Scholar 

  • Laemmli U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Leow T.C., Rahman R.N.Z.A., Basri M., Salleh A.B. (2004). High level expression of thermostable lipase fromGeobacillus sp. strain T1. Biosci. Biotechnol. Biochem., 68: 96–103, doi: 10.1271/bbb.68.96.

    Article  CAS  PubMed  Google Scholar 

  • Leow T.C., Rahman R.N.Z.R.A., Basri M., Salleh A.B. (2007). Athermoalkaliphilic lipase ofGeobacillus sp. T1. Extremophiles, 11 (3): 527–735.

    Article  CAS  PubMed  Google Scholar 

  • Lichty J.J., Malecki J.L., Agnew H.D., Michelson-Horowitz D.J., Tan S. (2005). Comparison of affinity tags for protein purification. Protein Expr. Purif., 41 (1): 98–105.

    Article  CAS  PubMed  Google Scholar 

  • Long Z.D., Xu J.H., Zhao L.L., Pan J., Yang S., Hua L. (2007). Overexpression ofSerratia marcescens lipase inEscherichia coli for efficient bioresolution of racemic ketoprofen. J. Mol. Catal. B-Enzym., 47 (3): 105–110.

    Article  CAS  Google Scholar 

  • Mosbah H., Sayari A., Bezzine S., Gargouri Y. (2006). Expression, purification, and characterization of His-taggedStaphylococcus xylosus lipase wild-type and its mutant Asp 290 Ala. Protein Expr. Purif., 47 (2): 516–523.

    Article  CAS  PubMed  Google Scholar 

  • Mozhaev V., Lange R., Kudryashova E.V., Balny C. (1996). Application of high hydrostatic pressure for increasing activity and stability of enzymes. Biotechnol. Bioeng., 52: 320–332.

    Article  CAS  PubMed  Google Scholar 

  • Muller-Hill B., Crapo L., Gilbert W. (1968). Mutants that make more lac repressor. Proc. Natl. Acad. Sc., USA, 59 (4): 1259–1262.

    Article  CAS  Google Scholar 

  • Nthangeni M.B., Patterton H-G., van Tonder A., Vergeer W.P., Litthauer D. (2001). Over-expression and properties of a purified recombinantBacillus licheniformis lipase: a comparative report onBacillus lipases. Enzyme Microb. Tech., 28 (7): 705–712.

    Article  CAS  Google Scholar 

  • Ogino H., Nakagawa S., Shinya K., Muto T., Fujimura N., Yasuda M., Ishikawa H. (2000). Purification and characterization of organic solvent-stable lipase from organic solvent-tolerantPseudomonas aeruginosa LST-03. J. Biosci. Bioeng., 89 (5): 451–457.

    Article  CAS  PubMed  Google Scholar 

  • Reetz M., Jaeger K-E. (1998). Overexpression, immobilization and biotechnological application ofPseudomonas lipases. Chem. Phys. Lipids, 93: 3–14.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Dannert C., Sztajer H., Stocklein W., Menge U., Schmid R.D. (1994). Screening, purification and properties of a thermophilic lipase fromBacillus thermocatenulatus. Biochim. Biophys. Acta, 1214: 43–53.

    CAS  PubMed  Google Scholar 

  • Sekhon A., Dahiya N., Tiwari R.P., Hoondal G.S. (2005). Properties of a thermostable extracellular lipase fromBacillus megaterium AKG-1. J. Basic Microbiol., 45 (2): 147–154.

    Article  CAS  PubMed  Google Scholar 

  • Sellek G.A., Chaudhuri J.B. (1999). Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microb. Tech., 25: 471–482.

    Article  CAS  Google Scholar 

  • Sharma A.K., Tiwari R.P., Hoondal G.S. (2001). Properties of a thermostable and solvent stable extracellular lipase from aPseudomonas sp. AG-8. J. Basic Microbiol., 41 (6): 363–366.

    Article  CAS  PubMed  Google Scholar 

  • Skerra A., Schmidt T.G.M. (1999). Applications of a peptide ligand for strepta vidin: the Strep-tag. Biomol. Eng., 16: 79–86.

    Article  CAS  PubMed  Google Scholar 

  • Sørensen H.P., Mortensen K.K. (2005). Advanced genetic strategies for recombinant protein expression inEscherichia coli. J. Biotech., 115 (2): 113–128.

    Article  Google Scholar 

  • Studier F.W., Moffatt B.A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol., 189 (1): 113–130.

    Article  CAS  PubMed  Google Scholar 

  • Studier F.W., Rosenberg A.H., Dunn J.J., Dubendorff J.W. (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol., 185: 60–89.

    Article  CAS  PubMed  Google Scholar 

  • Sugihara A., Ueshima M., Shimada Y., Tsunasawa S., Tominaga Y. (1992). Purification and characterization of a novel thermostable lipase fromPseudomonas cepacia. J. Biochem., 112 (5): 598–603.

    CAS  PubMed  Google Scholar 

  • Timasheff S.N. (1993). The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct., 22: 67–97.

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki W., Ue A., Kitamura Y. (2001). Effect of dimethylsulfoxide on hydrolysis of lipase. Biosci. Biotechnol. Biochem., 65 (9): 2078–2080.

    Article  CAS  PubMed  Google Scholar 

  • Vulfson E.Y. (1994). Industrial applications of lipases. In: Woolley P., Petersen S.B., Eds., Lipases: Their Structure, Biochemisîry and Application, Cambridge University Press, London, UK, pp. 271–286.

    Google Scholar 

  • Yan J., Yang J., Xu L., Yan Y. (2007). Gene cloning, overexpression and characterization of a novel organic solvent tolerant and thermostable lipase fromGalactomyces geothrichum YO5. J. Mol. Catal. B-Enzym., 49: 28–35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Noor Zaliha Raja Abd Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamid, T.H.T.A., Eltaweel, M.A., Rahman, R.N.Z.R.A. et al. Characterization and solvent stable features of Strep-tagged purified recombinant lipase from thermostable and solvent tolerantBacillus sp. strain 42. Ann. Microbiol. 59, 111–118 (2009). https://doi.org/10.1007/BF03175607

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175607

Key words

Navigation