Skip to main content
Log in

Production and GC-MS trace analysis of methyl eugenol from endophytic isolate ofAlternaria from rose

  • Ecological and Environmental Microbiology
  • Research Note
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

A total of fifty-four endophytic fungi were isolated from living symptomless leaves, stem and petals ofRosa damascaena Mill. (Rose). Rose is commercially exploited for the essential oil which is used in flavour and fragrances. Methyl eugenol [1,2-dimethoxy 4-(2-propenyl) benzene] constitutes about 1.9% composition of the rose oil and also acts as a precursor for the synthesis of methyl DOPA an important vasodilator. Besides this, it is an important bioactive compound with wide range of applications in pharmaceutical and flavouring industries. So far, methyl eugenol has been extracted either from rose oil or synthesized. During the present investigation GC-MS revealed the production of methyl eugenol by anAlternaria species isolated as an endophyte of cultivated and wild rose. The present work indicates that endophytes not only duplicate the secondary metabolite composition of host plant but can also serve as important tool for the preservation of biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bills G., Dombrowski A., Pelaiz A., Polishook J. (2002). Recent and future discoveries of pharmacologically active metabolites from tropical fungi. In: Walting R., Franklin J.C., Tropical Mycology: Mictomycetes, CABI Publishing, New York, pp. 165–194.

    Google Scholar 

  • Bryn H.D., Strobel G.A., Castilla U., Ezra D., Sears J., Weaver D.K., Runyan B.J. (2002). Napthelene an insect repellent produced byMuscoder vitigenus, a novel endophytic fungus. Microbiology, 148: 3737–3741.

    Google Scholar 

  • Bouwmeester H.J. (2006). Engineering the essence of plants. Nat. Biotech., 24: 1361.

    Article  Google Scholar 

  • Dryfuss M.M., Chapela I.M. (1994). Potential of fungi in the discovery of novel low molecular weight pharmaceutical. Butterworth Heinemann, London, United Kingdom, pp. 49–80.

    Google Scholar 

  • Gentile A., Rossi M.S., Cabral C., Craven K.D., Schardl C.L. (2005). Origin, divergence and phylogeny of epiochloe endophytes of native argentine grass. Mol. Phy. Evol., 35: 196–208.

    Article  CAS  Google Scholar 

  • Hu M.Y., Zhong G.H., Sun Z.T., Sh G., Liu H.M., Liu X.Q. (2005). Insecticidal activities of secondary metabolites of endophyticPenicillium inDerris elliptica Benth. J. Appl. Entomol., 129: 413–417.

    Article  CAS  Google Scholar 

  • Raviraja N.S. (2005). Fungal endophytes in five medicinal plant species from Kudremukh range, Western Ghats of India. J. Basic Microbiol., 3: 230–235.

    Article  Google Scholar 

  • Santos R.M.G., Rodrigues-Fo E., Rocha W.C., Teixeira M.F.S. (2003). Endophytic fungi fromMelia azadirchta. World J. Microbiol. Biotech., 19: 767–770.

    Article  Google Scholar 

  • Shelly T., Resilva S., Reyes M., Bignayan H. (1996). Feeding on methyl eugenol andFagraea berteriana flowers increases long-range female attraction by males of the oriental fruit fly (diptera: Tephritidae) Flor. Entomol., 79: 481–488.

    CAS  Google Scholar 

  • Sieber T.N., Canavesk F., Darworth C.E. (1991). Endophytic fungi of red alder (Alnus rubera) leaves and twigs in British Columbia. Can. J. Bot., 69: 407–411.

    Article  Google Scholar 

  • Siegel M.R., Latch G.C., Johnson M.C. (1985).Acremonium fungal endophytes of Tall fescue and perennial Ryegrass. Plant Dis., 69: 179–183.

    Google Scholar 

  • Stierle A., Strobel G., Stierle D. (1993). Taxol and taxane production byTaxomyces andreanae, an endophytic fungus of pacific yew. Science 260: 214–216.

    Article  CAS  PubMed  Google Scholar 

  • Stone R. (1993). Surprise. A Fungal factory of Taxol? Science, 260: 154–155.

    Article  CAS  PubMed  Google Scholar 

  • Stone R. (2001). Volatile metabolites of endophytes. Microbiology, 139: 134–140.

    Google Scholar 

  • Strobel G.A., Dirksie E., Sears J., Marksworth C. (2001). Volatile antimicrobials fromMuscodor albus a novel endophytic fungus. Microbiology, 147: 2943–2950.

    CAS  PubMed  Google Scholar 

  • Tan R.X., Zou W.X. (2001). Endophyte a rich source of functional metabolites. Nat. Prod. Rep., 18: 448–459.

    Article  CAS  PubMed  Google Scholar 

  • Vega E., Posada F., Peterson S.W., Gianfagna T.J., Chaves F. (2006).Penicillium species endophytic in coffee plants and ochratoxin A production. Mycologia, 98: 31–42.

    Article  CAS  PubMed  Google Scholar 

  • Wani M. (2005). Molecular and metabolite profiling of fungal endophytes of Rose. M. Phil Dissertation, University of Jammu, Jammu, J & K, India

    Google Scholar 

  • Zhang H.W., Song Y.C., Tan R.X. (2006). Biology and chemistry of endophytes. Nat. Prod. Rep., 23: 753–771.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjana Kaul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaul, S., Wani, M., Dhar, K.L. et al. Production and GC-MS trace analysis of methyl eugenol from endophytic isolate ofAlternaria from rose. Ann. Microbiol. 58, 443–445 (2008). https://doi.org/10.1007/BF03175541

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175541

Key words

Navigation