Skip to main content
Log in

Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains

  • Ecological and Environmental Microbiology
  • Reviews
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The entomopathogenic bacteriumBacillus thuringiensis is widely used for the control of many agricultural insect pests and vectors of human diseases. Several studies reported also on its antibacterial and antifungal activities. However, to our knowledge there were no studies dealing with its capacity to act as a plant growth promoting bacterium. This review surveys the potential ofB. thuringiensis as a polyvalent biocontrol agent, a biostimulator and biofertiliser bacterium that could promote the plant growth. Also, discussed is the safety ofB. thuringiensis as a bacterium phylogenetically related toBacillus cereus the opportunistic human pathogen andBacillus anthracis, the etiological agent of anthrax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abeles F., Morgan P., Saltveit M. (1992). Ethylene in Plant Biology, 2nd edn, Academic Press, New York.

    Google Scholar 

  • Agata N., Ohta M., Arakawa Y., Mori M. (1995). ThebceT gene ofBacillus cereus encodes an enterotoxic protein. Microbiology, 141: 983–988.

    CAS  PubMed  Google Scholar 

  • Ahern M., Verschueren S., van Sinderen D. (2003). Isolation and characterization of a novel bacteriocin produced byBacillus thuringiensis strain B439. FEMS Microbiol. Lett., 220: 127–131.

    CAS  PubMed  Google Scholar 

  • Arora N., Ahmad T., Rajagopal R., Bhatnagar R.K. (2003). A constitutively expressed 36 kDa exochitinase fromBacillus thuringiensis HD-1. Biochim. Biophys. Res. Commun., 307: 620–625.

    CAS  Google Scholar 

  • Baida G.E., Kuzmin N.P. (1995). Cloning and primary structure of a new hemolysin gene fromBacillus cereus. Biochim. Biophys. Acta, 1264: 151–154.

    PubMed  Google Scholar 

  • Beecher D.J., Olsen T.W., Somers E.B., Wong A.C.L. (2000). Evidence for contribution of tripartite hemolysin BL, phosphatidylcholine-preferring phospholipase C, and collagenase to virulence ofBacillus cereus endophthalmitis. Infect. Immun., 68: 5269–5276.

    CAS  PubMed  Google Scholar 

  • Belimov A.A., Hontzeas N., Safronova V. I., Demchinskaya S.V., Piluzza G., Bullitta S., Glick B.R. (2005). Cadmium-tolerant plant growth-promoting bacteria associatedwith the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem., 37: 241–250.

    CAS  Google Scholar 

  • Benizri E., Piutti S., Verger S., Pagès L., Vercambre G., Poessel J.L., Michelot P. (2005). Replant diseases: Bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biol. Biochem., 37: 1738–1746.

    CAS  Google Scholar 

  • Bizzarri M.F., Bishop A.H. (2007). Recovery ofBacillus thuringiensis in vegetative form from the phylloplane of clover (Trifolium hybridum) during a growing season. J. Invert. Pathol., 94: 38–47.

    Google Scholar 

  • Bloemberg G.V., Lugtenberg B.J.J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol., 4: 343–350.

    CAS  PubMed  Google Scholar 

  • Blumer C., Haas D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch. Microbiol., 173: 170–177.

    CAS  PubMed  Google Scholar 

  • Broderick N.A., Goodman R.M., Raffa K.F., Handelsman J. (2000). Synergy between zwittermicin A andBacillus thuringiensis subsp.kurstaki against gypsy moth (Lepidoptera: Lymantriidae). Environ. Entomol., 29: 101–107.

    CAS  Google Scholar 

  • Broderick N.A., Goodman R.M., Handelsman J., Raffa K.F. (2003). Effect of host diet and insect source on synergy of gypsy moth (Lepidoptera: Lymantriidae) mortality toBacillus thuringiensis subsp.kurstaki by zwittermicinA. Environ. Entomol., 32: 387–391.

    Google Scholar 

  • Broderick N.A., Raffa K.F., Handelsman J. (2006). Midgut bacteria required forBacillus thuringiensis insecticidal activity. PNAS, 103: 15196–15199.

    CAS  PubMed  Google Scholar 

  • Broek A.V., Lambrecht M., Eggermont K., Vanderleyden J. (1999). Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene inAzospirillum brasilense. J. Bacteriol., 181: 1338–1342.

    Google Scholar 

  • Budarina Z.I., Nikitin D.V., Zenkin N., Zakharova M., Semenova E., Shlyapnikov M.G., Rodikova E. A., Masyukova S., Ogarkov O., Baida G.E., Solonin A.S., Severinov K. (2004). A newBacillus cereus DNA-binding protein, HlyIIR, negatively regulates expression ofB. cereus haemolysin II. Microbiology, 150: 3691–3701.

    CAS  PubMed  Google Scholar 

  • Burd G.I., Dixon D.G., Glick B.R. (2000). Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol., 46: 237–245.

    CAS  PubMed  Google Scholar 

  • çakmakçi R., Kantar F., Algur Ö.F. (1999). Sugar beet and barley yields in relation toBacillus polymyxa andBacillus megaterium var.phosphaticum inoculation. J. Plant Nutr. Soil Sci., 162: 437–422.

    Google Scholar 

  • Carlini C.R., Grossi-de-Sa M.F. (2002). Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon, 40: 1515–1539.

    CAS  PubMed  Google Scholar 

  • Carlson C.R., Caugant D.A., Kolstø A.B. (1994). Genotypic diversity amongBacillus cereus andBacillus thuringiensis strains. Appl. Environ. Microbiol., 60: 1719–1725.

    CAS  PubMed  Google Scholar 

  • Cendrowski S., MacArthur W., Hanna P. (2004).Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol. Microbiol., 51: 407–417.

    CAS  PubMed  Google Scholar 

  • Chattopadhyay A., Bhatnagar N.B., Bhatnagar R. (2004). Bacterial insecticidal toxins. Crit. Rev. Microbiol., 30: 33–54.

    CAS  PubMed  Google Scholar 

  • Chen J.J., Yu J.X., Tang L.X., Tang M.J., Shi Y.X., Pang Y. (2003). Comparison of the expression ofBacillus thuringiensis fulllength and N-terminally truncated vip 3A gene inEscherichia coli. J. Appl. Microbiol., 95: 310–316.

    CAS  PubMed  Google Scholar 

  • Cherif A., Ouzari H., Daffonchio D., Cherif H., Ben Slama K., Hassen A., Jaoua S., Boudabous A. (2001). Thuricin 7: a novel bacteriocin produced byBacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol., 32: 243–247.

    CAS  PubMed  Google Scholar 

  • Cherif A., Brusetti L., Borin S., Rizzi A., Boudabous A., Khyami-Horani H., Daffonchio D. (2003a). Genetic relationship in the ‘Bacillus cereus group’ by rep-PCR fingerprinting and sequencing of aBacillus anthracis-specific rep-PCR fragment. J. Appl. Microbiol.; 94: 1108–1119.

    CAS  PubMed  Google Scholar 

  • Cherif A., Chehimi S., Limem F., Rokbani A., Hansen B.M., Hendriksen N.B., Daffonchio D., Boudabous A. (2003b). Purification and characterisation of the novel bacteriocin entomocine 9, and safety evaluation of its producer,Bacillus thuringiensis subsp.entomocidus HD9. J. Appl. Microbiol., 95: 990–1000.

    CAS  PubMed  Google Scholar 

  • Cherif A., Rezgui W., Raddadi N., Daffonchio D., Boudabous A. (2006). Characterisation and partial purification of entomocin 110, a newly identified bacteriocin fromBacillus thuringiensis subsp.entomocidus HD110, Microbiol. Res. (Epub ahead of print).

  • Chernin L., Ismailov Z., Haran S., Chet I. (1995). ChitinolyticEnterobacter agglomerans antagonistic to fungal plant pathogens. Appl. Environ. Microbiol., 61: 1720–1726.

    CAS  PubMed  Google Scholar 

  • Cibik R., Chapot-Chartier M.P. (2000). Autolysis of dairy leuconostocs and detection of peptidoglycan hydrolases by renaturing SDS-PAGE. J. Appl. Microbiol., 89: 862–869.

    CAS  PubMed  Google Scholar 

  • Costacurta A., Keijers V., Vanderleyden J. (1994). Molecular cloning and sequence analysis of anAzospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol. Gen. Genet., 243: 463–472.

    CAS  PubMed  Google Scholar 

  • Costacurta A., Vanderleyden J. (1995). Accumulation of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol., 21: 1–18.

    PubMed  Google Scholar 

  • Crickmore N., Zeigler D.R., Schnepf E., Van Rie J., Lereclus D., Baum J., Bravo A., Dean D.H. (2007). “Bacillus thuringiensis toxin nomenclature” (WWW document) http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/

  • Crosa J.H., Walsh C.T. (2002). Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev., 66: 223–249.

    CAS  PubMed  Google Scholar 

  • Bizani D., Dominguez A.P.M., Brandelli A. (2005). Purification and partial chemical characterization of the antimicrobial peptide cerein 8A. Lett. Appl. Microbiol., 41: 269–273.

    CAS  PubMed  Google Scholar 

  • Daffonchio D., Cherif A., Borin S. (2000). Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S-23S internal transcribed spacers describe genetic relationships in the “Bacillus cereus group”, Appl. Environ. Microbiol., 66: 5460–5468.

    CAS  PubMed  Google Scholar 

  • Daffonchio D., Raddadi N., Merabishvili M., Cherif A., Carmagnola L., Brusetti L., Rizzi A., Chanishvili N., Visca P., Sharp R., Borin S. (2005). A strategy for the identification ofBacillus cereus andBacillus thuringiensis strains near neighbor ofBacillus anthracis. Appl. Environ. Microbiol., 72: 1295–1301.

    Google Scholar 

  • Dalhammar G., Steiner H. (1984). Characterization of inhibitor A, a protease fromBacillus thuringiensis which degrades attacins and cecropins, two classes of antibacterial proteins in insects. Eur. J. Biochem., 139: 247–252.

    CAS  PubMed  Google Scholar 

  • Damgaard P.H. (1995). Diarrhoeal enterotoxin production by strains ofBacillus thuringiensis isolated from commercialBacillus thuringiensis-based insecticides. FEMS Immunol. Med. Microbiol., 12: 245–250.

    CAS  PubMed  Google Scholar 

  • Deikman J. (1997). Molecular mechanisms of ethylene regulation of gene transcription. Physiol. Plant., 100: 561–566.

    CAS  Google Scholar 

  • del Pozo J.C., Lopez-Matas M.A., Ramirez-Parra E., Gutierrez C. (2005). Hormonal control of the plant cell cycle. Physiol. Plant, 123: 173–183.

    Google Scholar 

  • Dong Y.H., Xu J.L., Li X.Z., Zhang L.H. (2000). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence ofErwinia carotovora. Proc. Nat. Acad. Sci. USA, 97: 3526–3531.

    CAS  PubMed  Google Scholar 

  • Dong Y.H., Wang L.H., Xu J.L., Zhang H.B., Zhang X.F., Zhang L.H. (2001). Quenching quorum-sensing dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411: 813–817.

    CAS  PubMed  Google Scholar 

  • Dong Y.H., Gusti A.R., Zhang Q., Xu J.L., Zhang L.H. (2002). Identification of quorum-quencing N-acyl homoserine lactonases fromBacillus species. Appl. Environ. Microbiol., 68: 1754–1759.

    CAS  PubMed  Google Scholar 

  • Dong Y.H., Zhang X.F., Xu J.L., Zhang L.H. (2004). InsecticidalBacillus thuringiensis silencesErwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl. Environ. Microbiol., 70: 954–960.

    CAS  PubMed  Google Scholar 

  • Douds D.D., Nagahashi G., Pfeffer P.E., Kayser W.M., Reider C. (2005). On-farm production and utilization of arbuscular mycorrhizal fungus inoculum. Can. J. Plant Sci., 85: 15–21.

    Google Scholar 

  • Emmert E.A.B., Klimowicz A.K., Thomas M.G., Handelsman J. (2004). Genetics of zwittermicin A production byBacillus cereus. Appl. Environ. Microbiol., 70: 104–113.

    CAS  PubMed  Google Scholar 

  • Estruch J.J., Warren G.W., Mullins M.A., Nye G.J., Craig J.A., Koziel M.G. (1996). Vip 3A, a novelBacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Nat. Acad. Sci. USA, 93: 5389–5394.

    CAS  PubMed  Google Scholar 

  • Fagerlund A., Ween O., Lund T., Hardy S.P., Granum P.E. (2004). Genetic and functional analysis of the cytK family of genes inBacillus cereus. Microbiology, 150: 2689–2697.

    CAS  PubMed  Google Scholar 

  • Fang J., Xu X., Wang P., Zhao J.Z., Shelton A.M., Cheng J., Feng M.G., Shen Z. (2007). Characterization of chimericBacillus thuringiensis Vip3 toxins. Appl. Environ. Microbiol., 73: 956–961.

    CAS  PubMed  Google Scholar 

  • Faramarzi M.A., Stagars M., Pensini E., Krebs W., Brandl H. (2004). Metal solubilization from metal-containing solid materials by cyanogenicChromobacterium violaceum. J. Biotech., 113: 321–326.

    CAS  Google Scholar 

  • Favret M.E., Yousten A.A. (1989). Thuricin: the bacteriocin produced byBacillus thuringiensis. J. Invert. Pathol., 53: 206–216.

    CAS  Google Scholar 

  • Federle M.J., Bassler B.L. (2003). Interspecies communication in bacteria. J. Clin. Invest., 112: 1291–1299.

    CAS  PubMed  Google Scholar 

  • Fedhila S., Nel P., Lereclus D. (2002). The InhA2 metalloprotease ofBacillus thuringiensis strain 407 is required for pathogenicity in insects infected via the oral route. J. Bacteriol., 184: 3296–3304.

    CAS  PubMed  Google Scholar 

  • Fedhila S., Gohar M., Slamti L., Nel P., Lereclus D. (2003). TheBacillus thuringiensis PlcR-regulated gene inhA2 is necessary, but not sufficient, for virulence. J. Bacteriol., 185: 2820–2825.

    CAS  PubMed  Google Scholar 

  • Felse P.A., Panda T. (1999). Regulation and cloning of microbial chitinase genes. Appl. Microbiol. Biotechnol., 51: 141–151.

    CAS  PubMed  Google Scholar 

  • Firoved A.M., Deretic V. (2003). Microarray analysis of global gene expression in mucoidPseudomonas aeruginosa. J. Bacteriol., 185: 1071–1081.

    CAS  PubMed  Google Scholar 

  • Flagan S., Ching W.K., Leadbetter J.R. (2003).Arthrobacter strain VAI-A utilizes acyl-homoserine lactone inactivation products and stimulates quorum signal biodegradation byVariovorax paradoxus. Appl. Environ. Microbiol., 69: 909–916.

    CAS  PubMed  Google Scholar 

  • Follmer C., Real-Guerra R., Wasserman G.E., Olivera-Severo D.R., Carlini C.R. (2004). Jackbean, soybean andBacillus pasteurii ureases biological effects unrelated to ureolytic activity. Eur. J. Biochem., 271: 1357–1363.

    CAS  PubMed  Google Scholar 

  • Freeman S., Minzm O., Kolesnik I., Barbul O., Zveibil A., Maymon M., Nitzani Y., Kirshner B., Rav-David D., Bilu A., Dag A., Shafir S., Elad Y. (2004).Trichoderma biocontrol ofColletotrichum acutatum andBotrytis cinerea and survival in strawberry. Eur. J. Plant Pathol., 110: 361–370.

    CAS  Google Scholar 

  • Fuqua C., Parsek M.R., Greenberg E.P. (2001). Regulation of gene expression by cell-to-cell communication: acylhomoserine lactone quorum sensing. Annu. Rev. Genet., 35: 439–468.

    CAS  PubMed  Google Scholar 

  • Gallagher L.A., Manoil C. (2001).Pseudomonas aeruginosa PAO1 killsCaenorhabditis elegans by cyanide poisoning. J. Bacteriol., 183: 6207–6214.

    CAS  PubMed  Google Scholar 

  • Ghelardi E., Celandroni F., Salvetti S., Barsotti C., Baggiani A., Senesi S. (2002). Identification and characterization of toxigenicBacillus cereus isolates responsible for two food-poisoning outbreaks. FEMS Microbiol. Lett., 208: 129–134.

    CAS  PubMed  Google Scholar 

  • Ghosh S., Penterman J.N., Little R.D., Chavez R., Glick B.R. (2003). Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola,Brassica campestris. Plant Physiol. Biochem., 41: 277–281.

    CAS  Google Scholar 

  • Gilmore M.S., Cruz-Rodz A.L., Leimeister-Wachter M., Kreft J., Goebel W. (1989). ABacillus cereus cytolytic determinant, Cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage. J. Bacteriol., 171: 744–753.

    CAS  PubMed  Google Scholar 

  • Glare T.R., O’Callaghan M. (2000). Characterisation. In:Bacillus thuringiensis: Biology, Ecology and Safety, J. Wiley and Sons Ltd. West Sussex PO19 1UD, UK, pp. 71–79.

    Google Scholar 

  • Glass A.D.M. (1989). Plant Nutrition: An Introduction to Current Concepts. Jones and Bartlett Publishers, Boston, MA, USA.

    Google Scholar 

  • Glick B.R. (1995). The enhancement of plant growth by free-living bacteria. Can. J. Microbiol., 41: 109–117.

    CAS  Google Scholar 

  • Glick B.R., Penrose D.M., Li J. (1998). A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol., 190: 63–68.

    CAS  PubMed  Google Scholar 

  • Glick B.R., Patten C.L., Holguim G., Penrose D.M. (1999). Biochemicaland Genetic Mechanisms Used by Plant Growth Promoting Bacteria, ICP, Covent Garden, London.

    Google Scholar 

  • Glick B.R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol. Lett., 251: 1–7.

    CAS  PubMed  Google Scholar 

  • Glickmann E., Gardan L., Jacquet S., Hussain S., Elasri M., Petit A., Dessaux Y. (1998). Auxin production is a common feature of most pathovars ofPseudomonas syringae. Molecular Plant-Microbe Interact., 11: 156–162.

    CAS  Google Scholar 

  • Goldstein A.H. (1986). Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am. J. Altern. Agr., 1: 51–57.

    Google Scholar 

  • Gominet M., Slamti L., Gilois N., Rose M., Lereclus D. (2001). Oligopeptide permease is required for expression of theBacillus thuringiensis plcR regulon and for virulence. Mol. Microbiol., 40: 963–975.

    CAS  PubMed  Google Scholar 

  • Gooday G.W. (1994). Physiology of microbial degradation of chitin and chitosan. In: Ratledge C., Ed., Biochemistry of Microbial Degradation, Kluwer, Dordrecht, pp. 279–312.

    Google Scholar 

  • Grant C.A., Bailey L.D., Harapiak J.T., Flore N.A. (2002). Effect of phosphate source, rate and cadmium content and use ofPenicillium bilaii on phosphorus, zinc and cadmium concentration in durum wheat grain. J. Sci. Food. Agri., 82: 301–308.

    CAS  Google Scholar 

  • Grichko V.P., Glick B.R. (2001). Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem., 39: 11–17.

    CAS  Google Scholar 

  • Griffitts J.S., Haslam S.M., Yang T., Garczynski S.F., Mulloy B., Morris H., Cremer P.S., Dell A., Adang M.J., Aroian R.V. (2005). Glycolipids as receptors forBacillus thuringiensis crystal toxin. Science, 307: 922–925.

    CAS  PubMed  Google Scholar 

  • Handelsman J., Nesmith W.C., Raffel S.J. (1991). Microssay for biological and chemical control of infection of tobacco byPhytophthora parasitica var.nicotianae. Curr. Microbiol., 22: 317–319.

    Google Scholar 

  • Hansen B.M., Handriksen N.B. (2001). Detection of enterotoxicBacillus cereus andBacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol., 67: 185–189.

    CAS  PubMed  Google Scholar 

  • Héchard Y., Sahl H.G. (2002). Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie, 84: 545–557.

    PubMed  Google Scholar 

  • Helgason E., Økstad O.A., Caugant D.A., Johansen H.A., Fouet A., Mock M., Hegna I., Kolstø A.B. (2000).Bacillus anthracis, Bacillus cereus andBacillus thuringiensis one species on the basis of genetic evidence. Appl. Environ. Microbiol., 66: 2627–2630.

    CAS  PubMed  Google Scholar 

  • Hernandez E., Ramisse F., Ducoureau J.P., Cruel T., Cavallo J.D. (1998).Bacillus thuringiensis subsp.konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J. Clin. Microbiol., 36: 2138–2139.

    CAS  PubMed  Google Scholar 

  • Hernandez E., Ramisse F., Cruel T., le Vagueresse R., Cavallo J.D. (1999).Bacillus thuringiensis serotype H34 isolated from human and insecticidal strains serotypes 3a3b and H14 can lead to death of immunocompetent mice after pulmonary infection. FEMS Immunol. Med. Microbiol., 24: 43–47.

    CAS  PubMed  Google Scholar 

  • Hernandez E., Ramisse F., Gros P., Cavallo J. (2000). Superinfection byBacillus thuringiensis H34 or 3a3b can lead to death in mice infected with the influenza A virus. FEMS Immunol. Med. Microbiol., 29: 177–181.

    CAS  PubMed  Google Scholar 

  • Hernández C.S., Andrewa R., Ferré Y.B.J. (2005). Isolation and toxicity ofBacillus thuringiensis from potato-growing areas in Bolivia. J. Invert. Pathol., 88: 8–16.

    Google Scholar 

  • Hill K.K., Ticknor L.O., Okinaka R.T., Asaym M., Blair H., Bliss K.A., Laker M., Pardington P.E., Richardson A.P., Tonks M., Beecher D.J., Kemp J.D., Kolstø A.B., Wong A.C.L., Keim P., Jackson P.J. (2004). Fluorescent amplified fragment length polymorphism analysis ofBacillus anthracis, Bacillus cereus, andBacillus thuringiensis isolates. Appl. Environ. Microbiol., 70: 1068–1080.

    CAS  PubMed  Google Scholar 

  • Hoffmaster A.R., Ravel J., Rasko D.A., Chapman G.D., Chute M.D., Marston C.K., De B.K., Sacchi C.T., Fitzgerald C., Mayer L.W., Maiden M.C.J., Priest F.G., Barker M., Jiang L., Cer R.Z., Rilstone J., Peterson S.N., Weyant R.S., Galloway D.R., Rea T.D., Popovic T., Fraser C.M. (2004). Identification of anthrax toxin genes in aBacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA, 101: 8449–8454.

    CAS  PubMed  Google Scholar 

  • Hontzeas N., Zoidakis J., Glick B.R., Abu-Omar M.M. (2004). Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacteriumPseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim. Biophys. Acta, 1703: 11–19.

    CAS  PubMed  Google Scholar 

  • Huang J.J., Han J.I., Zhang L.H., Leadbetter J.R. (2003). Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad andPseudomonas aeruginosa PAO1. Appl. Environ. Microbiol., 69: 5941–5949.

    CAS  PubMed  Google Scholar 

  • Huang C.J., Chen C.Y. (2004). Gene cloning and biochemical characterization of chitinase CH fromBacillus cereus 28–9. Ann. Microbiol., 54: 289–297.

    CAS  Google Scholar 

  • Huang C.J., Wang T.K., Chung S.C., Chen C.Y. (2005). Identification of an antifungal chitinase from a potential biocontrol agent,Bacillus cereus 28–9. J. Biochem. Mol. Biol., 38: 82–88.

    CAS  PubMed  Google Scholar 

  • Huang J.J., Petersen A., Whiteley M., Leadbetter J.R. (2006). Identification of QuiP, the product of gene PA1032, as the second Acyl-Homoserine Lactone Acylase ofPseudomonas aeruginosa PAO1. Appl. Environ. Microbiol., 72: 1190–1197.

    CAS  PubMed  Google Scholar 

  • Hultmark D., Engstrom A., Bennich H., Kapur R., Boman H.G. (1982). Insect immunity: isolation and structure of cecropin D and four minor antibacterial components fromCecropia pupae. Eur. J. Biochem., 127: 207–217.

    CAS  PubMed  Google Scholar 

  • Il Kim P., Chung K.C. (2004). Production of an antifungal protein for control ofColletotrichum lagenarium byBacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett., 234: 177–183.

    Google Scholar 

  • Inagaki S., Miyasono M., Yamamoto M., Ohba K., Ishiguro T., Takeda R., Hayashi Y. (1992). Induction of antibacterial activity againstBacillus thuringiensis in the common cutworm,Spodoptera litura (Lepidoptera: Noctuidae). Appl. Entomol. Zool., 27: 565–570.

    Google Scholar 

  • Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V., Bhattacharyya A., Reznik G., Mikhailova N., Lapidus A., Chu L., Mazur M., Goltsman E., Larsen N., D’Souza M., Walunas T., Grechkin Y., Pusch G., Haselkorn R., Fonstein M., Ehrlich S.D., Overbeek R., Kyrpides N. (2003). Genome sequence ofBacillus cereus and comparative analysis withBacillus anthracis. Nature, 423: 87–91.

    CAS  PubMed  Google Scholar 

  • Jackson S.G., Goodbrand R.B., Ahmed R., Kasatiya S. (1995).Bacillus cereus andBacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett. Appl. Microbiol., 21: 103–105.

    CAS  PubMed  Google Scholar 

  • James C. (2005) Preview: Global status of commercialized biotech/GM crops: 2004. ISAAA Briefs No. 32. ISAAA (International Service for the Acquisition of Agri-biotech Applications): Ithaca, NY.

    Google Scholar 

  • Jensen G.B., Larsen P., Jacobsen B.L., Madsen B., Smidt L., Andrup L. (2002).Bacillus thuringiensis in fecal samples from greenhouse workers after exposure toB-thuringiensis-based pesticides. Appl. Environ. Microbiol., 68: 4900–4905.

    CAS  PubMed  Google Scholar 

  • Jia Y.J., Ito H., Matsui H., Honma M. (2000). 1-aminocyclopropane-1-carboxylate (ACC) deaminase induced by ACC synthesized and accumulated inPenicillium citrinum intracelular spaces. Biosci. Biotechnol. Biochem., 64: 299–305.

    CAS  PubMed  Google Scholar 

  • Kim J.Y. (2003). Overproduction and secretion ofBacillus circulans endo-?-1,3-1,4-glucanase gene (bglBC1) inB. subtilis andB. megaterium. Biotech. Lett., 25: 1445–1449.

    CAS  Google Scholar 

  • Klaenhammer T.R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev., 12: 39–86.

    CAS  PubMed  Google Scholar 

  • Knight P.J.K., Crickmore N., Ellar D.J. (1994). The receptor ofBacillus thuringiensis CryIA(c)delta-endotoxin in the brush border membrane ofthe lepidopteran Manduca sexta is aminopeptidase N. Mol. Microbiol., 11: 429–436.

    CAS  PubMed  Google Scholar 

  • Kobayashi D.Y., Reedy R.M., Bick J.A., Oudemans P.V. (2002). Characterization of a chitinase gene fromStenotrophomonas maltophilia strain 34S1 and its involvementin biological control. Appl. Environ. Microbiol., 68: 1047–1054.

    CAS  PubMed  Google Scholar 

  • Kobayashi T., Suzuki M., Inoue H., Itai R.N., Takahashi M., Nakanishi H., Mori S., Nishizawa N.K. (2005). Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J. Experim. Bot., 56: 1305–1316.

    CAS  Google Scholar 

  • Kostichka K., Warren G.W., Mullins M., Mullins A.D., Craig J.A., Koziel M.G., Estruch J.J. (1996). Cloning of acryV-type insecticidal protein gene fromBacillus thuringiensis: The cryV-encoded protein is expressed early in stationary phase. J. Bacteriol., 178: 2141–2144.

    CAS  PubMed  Google Scholar 

  • Kotze A.C., O’Grady J., Gough J.M., Pearson R., Bagnall N.H., Kemp D.H., Akhurst R.J. (2005). Toxicity ofBacillus thuringiensis to parasitic and free-livinglife-stages of nematode parasites of livestock. Int. J. Parasitol., 35: 1013–1022.

    CAS  PubMed  Google Scholar 

  • Leadbetter J.R., Greenberg E.P. (2000). Metabolism of acylhomoserine lactone quorum-sensing signals byVariovorax paradoxus. J. Bacteriol., 18: 6921–6926.

    Google Scholar 

  • Lee S.J., Park S.Y., Lee J.J., Yum D.Y., Koo B.T., Lee J.K. (2002). Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies ofBacillus thuringiensis. Appl. Environ. Microbiol., 68: 3919–3924.

    CAS  PubMed  Google Scholar 

  • Lee M.K., Walters F.S., Hart H., Palekar N., Chen J.S. (2003). The mode of action of theBacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab d-endotoxin. Appl. Environ. Microbiol., 69: 4648–4657.

    CAS  PubMed  Google Scholar 

  • Leveau J.H.J., Lindow S.E. (2005). Utilization of the plant hormone indole-3-acetic acid for growth byPseudomonas putida strain 1290. Appl. Environ. Microbiol., 71: 2365–2371.

    CAS  PubMed  Google Scholar 

  • Lin Y.H., Xu J.L., Hu J., Wang L.H., Ong S.L., Leadbetter J.R., Zhang L.H. (2003). Acyl-homoserine lactone acylase fromRalstonia strain XJ12B represents a novel and potent class of quorum quenching enzymes. Mol. Microbiol., 47: 849–860.

    PubMed  Google Scholar 

  • Lindback T., Fagerlund A., Rodland M.S., Granum P.E. (2004). Characterization of theBacillus cereus Nhe enterotoxin. Microbiology, 150: 3959–3967.

    PubMed  Google Scholar 

  • Liu S.T., Perry K. L., Schardl C.L., Kado C.L. (1982).Agrobacterium Ti plasmid indoleacetic acid gene is required for crown gall oncogenesis. Proc. Natl. Acad. Sci., 79: 2812–2816.

    CAS  PubMed  Google Scholar 

  • Liu M., Cai Q.X., Liu H.Z., Zhang B.H., Yan J.P., Yuan Z.M. (2002). Chitinolytic activities inBacillus thuringiensis their synergistic effects on larvicidal activity. J. Appl. Microbiol., 93: 374–379.

    CAS  PubMed  Google Scholar 

  • Liu M., Wang J., Liu J., Yao J.M., Yu Z.L. (2006). Expression ofBacillus subtilis JA18 endo-beta-1,4-glucanase gene inEscherichia coli and characterization of the recombinant enzyme. Ann. Microbiol., 56 (1): 41–45.

    CAS  Google Scholar 

  • Liu D., Thomas P.W., Momb J., Hoang Q.Q., Petsko G.A., Ringe D., Fast W. (2007). Structure and specificity of a quorumquenching lactonase (AiiB) fromAgrobacterium tumefaciens. Biochemistry, 46: 11789–11799.

    CAS  PubMed  Google Scholar 

  • Lorck H. (1948). Production of hydrocyanic acid by bacteria. Physiol. Plant., 1: 142–146.

    CAS  Google Scholar 

  • Lund T., Granum P.E. (1997). Comparison of biological effectof the two different enterotoxin complexes isolated from three-different strains ofBacillus cereus. Microbiol., 143: 3329–3336.

    CAS  Google Scholar 

  • Lund T., De Buyser M.L., Granum P.E. (2000). A new cytotoxin fromBacillus cereus that may cause necrotic enteritis. Mol. Microbiol., 38: 254–261.

    CAS  PubMed  Google Scholar 

  • Luthy P., Wolfersberger M.G. (2000). Pathogenesis ofBacillus thuringiensis toxins. In: Charies J.F., Delécluse A., Nielsen-LeRoux C., Eds, Entomopathogenic Bacteria: From Laboratory to Field Application, Kluwer Academic Publishers, Dordrecht, pp. 167–180.

    Google Scholar 

  • Manceva S.D., Pusztai-Carey M., Russo P.S., Butko P. (2005). A detergent-like mechanism of action of the cytolytic toxin Cyt1A fromBacillus thuringiensis var.israelensis. Biochemistry, 44: 589–597.

    CAS  PubMed  Google Scholar 

  • Masalha J., Kosegarten H., Elmaci Ö., Mengel K. (2000). The central role of microbial activity for iron acquisition in maize and sunflower. Biol. Fertil. Soils, 30: 433–439.

    CAS  Google Scholar 

  • Mayak S., Tirosh T., Glick B.R. (2004a). Plant growth-promoting bacteria confer resistancein tomato plants to salt stress. Plant Physiol. Biochem., 42: 565–572.

    CAS  PubMed  Google Scholar 

  • Mayak S., Tirosh T., Glick B.R. (2004b). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci., 166: 525–530.

    CAS  Google Scholar 

  • Miller M.B., Bassler B.L. (2001). Quorum sensing in bacteria. Annu. Rev. Microbiol., 55: 165–199.

    CAS  PubMed  Google Scholar 

  • Minami R., Uchiyama K., Murakami T., Kawai J., Mikami K., Yamada T., Yokoi D., Ito H., Matsui H., Honma M. (1998). Properties, sequence, and synthesis inEscherichia coli of 1-aminocyclopropane-1-carboxylate deaminase fromHansenula saturnus. J. Biochem. (Tokyo), 123: 1112–1118.

    CAS  Google Scholar 

  • Miyanishi N., Matsubara Y., Hamada N., Kobayashi T., Imada C., Watanabe E. (2003). The action modes of an extracellular β-1,3-glucanase isolated fromBacillus clausii NM-1 on β-1,3-glucooligosaccharides. J. Biosc. Bioeng., 96: 32–37.

    CAS  Google Scholar 

  • Mora D., Musacchio F., Fortina M.G., Senini L., Manachini P.L. (2003). Autolytic activity and pediocin-induced lysis inPediococcus acidilactici andPediococcus pentosaceus strains. J. Appl. Microbiol., 94: 561–570.

    CAS  PubMed  Google Scholar 

  • Mukherjee P.K., Rai R.K. (2000). Effect of vesicular arbuscular mycorrhizae and phosphate-solubilizing bacteria on growth, yield and phosphorus uptake by wheat (Triticum aestivum) and chickpea (Cicer arietinum). Ind. J. Agro., 45: 602–607.

    Google Scholar 

  • Naclerio G., Ricca E., Sacco M., De Felice M. (1993). Antimicrobial activity of a newly identified bacteriocin ofBacillus cereus. Appl. Environ. Microbiol., 59: 4313–4316.

    CAS  PubMed  Google Scholar 

  • Nair J.R., Narasimman G., Sekar V. (2004). Cloning and partial characterization of zwittermicin A resistance gene cluster fromBacillus thuringiensis subsp.kurstaki strain HD1. J. Appl. Microbiol., 97: 495–503.

    CAS  PubMed  Google Scholar 

  • Nautiyal C.S., Bhadauria S., Kumar P., Lai H., Mondal R., Verma D. (2000). Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbi. Lett., 182: 291–296.

    CAS  Google Scholar 

  • Osburn R.M., Milner J.L., Oplinger E.S., Smith R.S., Handelsman J. (1995). Effect ofBacillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis., 79: 551–556.

    Google Scholar 

  • Oscáriz J.C., Lasa I., Pisabarro A.G. (1999). Detection and characterization of cerein 7, a new bacteriocin produced byBacillus cereus with a broad spectrum of activity. FEMS Microbiol. Lett., 178: 337–341.

    Article  PubMed  Google Scholar 

  • Oscáriz J.C., Pisabarro A.G. (2000). Characterization and mechanism of action of cerein 7, a bacteriocin produced byBacillus cereus BC7. J. Appl. Microbiol., 89: 361–369.

    PubMed  Google Scholar 

  • Paik H.D., Bae S.S., Park S.H., Pan J.G. (1997). Identification and partial characterization of tochicin, a bacteriocin produced byBacillus thuringiensis subsp.tochigiensis. J. Ind. Microbiol. Biotech., 19: 294–298.

    CAS  Google Scholar 

  • Paik H.D., Lee N.K., Lee K.H., Hwang Y.I., Pan J.G. (2000). Identification and partial characterization of cerein BS229, a bacteriocin produced byBacillus cereus BS229. J. Miicrobiol. Biotech., 10: 195–200.

    CAS  Google Scholar 

  • Pal S.S. (1998). Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil, 198: 169–177.

    CAS  Google Scholar 

  • Park S.Y., Kang H.O., Jang H.S., Lee J.K., Koo B.T., Yum D.Y. (2005a). Identification of extracellular N-acylhomoserine lactone acylase from aStreptomyces sp. and its application to quorum quenching. Appl. Environ. Microbiol., 71: 2632–2641.

    CAS  PubMed  Google Scholar 

  • Park R.Y., Choi M.H., Sun H.Y., Shin S.H. (2005b). Production of catechol-siderophore and utilization of transferrin-bound iron inBacillus cereus. Biol. Pharm. Bull., 28: 1132–1135.

    CAS  PubMed  Google Scholar 

  • Patten C.L., Glick B.R. (2002). Role ofPseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol., 68: 3795–3801.

    CAS  PubMed  Google Scholar 

  • Pleban S., Chernin L., Chet I. (1997). Chitinolytic activity of an endophytic strain ofBacillus cereus. Lett. Appl. Microbiol., 25: 284–288.

    CAS  PubMed  Google Scholar 

  • Porcar M., Juarez-Perez V. (2003). PCR-based identification ofBacillus thuringiensis pesticidal crystal genes. FEMS Microbiol. Rev., 26: 419–432.

    CAS  PubMed  Google Scholar 

  • Prinsen E., Costacurta A., Michiels K., Vanderleyden J., Van Onckelen H. (1993).Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol. Plant-Microbe Interact., 6: 609–615.

    CAS  Google Scholar 

  • Raddadi N., Cherif A., Mora D., Ouzari H., Boudabous A., Molinari F., Daffonchio D. (2004). The autolytic phenotype ofBacillus thuringiensis. J. Appl. Microbiol., 97: 158–168.

    CAS  PubMed  Google Scholar 

  • Raddadi N., Cherif A., Mora D., Brusetti L., Borin S., Boudabous A., Daffonchio D. (2005). The autolytic phenotype of theBacillus cereus group. J. Appl. Microbiol., 99: 1070–1081.

    CAS  PubMed  Google Scholar 

  • Raffel S.J., Stabb E.V., Milner J.L., Handelsman J. (1996). Genotypic and phenotypic analysis of zwittermicin A-producing strains ofBacillus cereus. Microbiology, 142: 3425–3436.

    CAS  PubMed  Google Scholar 

  • Ramette A., Frapolli M., Defago G., Moenne-Loccoz Y. (2003). Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol. Plant-Microbe Interact., 16: 525–535.

    CAS  PubMed  Google Scholar 

  • Ramisse V., Patra G., Garrigue H., Guesdon J.L., Mock M. (1996). Identification and characterization ofBacillus anthracis by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DNA. FEMS Microbiol. Lett., 145: 9–16.

    CAS  PubMed  Google Scholar 

  • Rasko D.A., Ravel J., Økstad O.A., Helgason E., Cer R.Z., Jiang L., Shores K.A., Fouts D.E., Tourasse N.J., Angiuoli S.V., Kolonay J., Nelson W.C., Kolstø A.B., Fraser C.M., Read T.D. (2004). The genome sequence ofBacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related toBacillus anthracis pXO1. Nucl. Ac. Res., 32: 977–988.

    CAS  Google Scholar 

  • Rasko D.A., Altherr M.R., Han C.S., Ravel J. (2005). Genomics of theBacillus cereus group of organisms. FEMS Microbiol. Rev., 29: 303–329.

    CAS  PubMed  Google Scholar 

  • Read T.D., Salzberg S.L., Pop M., Shumway M., Umayam L., Jiang L., Holtzapple E., Busch J.D., Smith K.L., Schupp J.M., Solomon D., Keim P., Fraser C.M. (2002). Comparative genome sequencing for discovery of novel polymorphisms inBacillus anthracis. Science, 296: 2028–2033.

    CAS  PubMed  Google Scholar 

  • Read T.D., Peterson S.N., Tourasse N., Les Baillie W., Paulsen I.T., Nelson K.E., Tettelin H., Fouts D.E., Eisen J.A., Gill S.R., Holtzapple E.K., Økstad O.A., Helgason E., Rilstone J., Wu M., Kolonay J.F., Beanan M.J., Dodson R.J., Brinkac L.M., Gwinn M., DeBoy R.T., Madpu R., Daugherty S.C., Durkin A.S., Haft D.H., Nelson W.C., Peterson J.D., Pop M., Khouri H.M., Radune D., Benton J.L., Mahamoud Y., Jiang L., Hance I.R., Weidman J.F., Berry K.J., Plaut R.D., Wolf A.M., Watkins K.L., Nierman W.C., Hazen A., Cline R., Redmond C., Thwaite J.E., White O., Salzberg S.L., Thomason B., Friedlander A.M., Koehler T.M., Hanna P.C., Kolstø A.-B., Fraser C.M. (2003). The genome sequence ofBacillus anthracis Ames and comparison to closely related bacteria. Nature, 423: 81–86.

    CAS  PubMed  Google Scholar 

  • Regev A., Keller M., Strizhov N., Sneh B., Prudovsky E., Chet I., Ginzberg I., KonczKalman Z., Koncz C., Schell J., Zilberstein A. (1996). Synergistic activity of aBacillus thuringiensis delta-endotoxin and a bacterial endochitinase againstSpodoptera littoralis larvae. Appl. Environ. Microbiol., 62: 3581–3586.

    CAS  PubMed  Google Scholar 

  • Ren D., Zuo R., Wood T.K. (2005). Quorum-sensing antagonist (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone influences siderophore biosynthesis inPseudomonas putida andPseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 66: 689–695.

    CAS  PubMed  Google Scholar 

  • Reyes-Ramirez A., Escudero-Abarca B.I., Aguilar-Uscanga G., Hayward-Jones P.M., Barboza-Corona J.E. (2004). Antifungal activity ofBacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci., 69: M131-M134.

    Article  CAS  Google Scholar 

  • Richardson A.E. (2001). Prospects for using soil microorganisms toimprove the acquisition of phosphorus by plants. Aust. J. Plant Physiol., 28: 897–906.

    Google Scholar 

  • Riley M.A., Wertz J.E. (2002). Bacteriocins: evolution, ecology and application. Ann. Rev. Microbiol., 56: 117–137.

    CAS  Google Scholar 

  • Risøen P.A., Rønning P., Hegna I.K., A Kolstø B. (2004). Characterization of a broad range antimicrobial substance fromBacillus cereus. J. Appl. Microbiol., 96: 648–655.

    PubMed  Google Scholar 

  • Rivera A.M.G., Granum P.E., Priest F.G. (2000). Common occurrence of enterotoxin genes and enterotoxicity inBacillus thuringiensis. FEMS Microbiol. Lett., 190: 151–155.

    Google Scholar 

  • Rodriguez H., Fraga R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv., 17: 319–339.

    CAS  PubMed  Google Scholar 

  • Rosenquist H., Smidt L., Andersen S.R., Jensen G.B., Wilcks A. (2005). Occurrence and significance ofBacillus cereus andBacillus thuringiensis in ready-to-eat food. FEMS Microbiol. Lett., 250: 129–136.

    CAS  PubMed  Google Scholar 

  • Sampson M.N., Gooday G.W. (1998). Involvement of chitinases ofBacillus thuringiensis during pathogenesis in insects. Microbiology, 144: 2189–2194.

    CAS  PubMed  Google Scholar 

  • Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R., Dean D.H. (1998).Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev., 62: 775–806.

    CAS  PubMed  Google Scholar 

  • Schoeni J.L., Wong A.C.L. (2005).Bacillus cereus food poisoning and its toxins. J. Food Protect., 68: 636–648.

    CAS  Google Scholar 

  • Schutz A., Golbik R., Tittmann K., Svergun D.I., Koch M.H.J., Hubner G., Konig S. (2003). Studies on structure-function relationships of indolepyruvate decarboxylase fromEnterobacter cloacae, a key enzyme of the indole acetic acid pathway. Eur. J. Biochem., 270: 2322–2331.

    CAS  PubMed  Google Scholar 

  • Schwart J.L., Laprade R. (2000). Membrane permeabilization byBacillus thuringiensis toxins: protein formation and pore insertion. In: Charles J.F., Delécluse A., Nielsen-LeRoux C., Eds, Entomopathogenic Bacteria: From Laboratory to Field Application, Kluwer Academic Publishers, Dordrecht, pp. 199–218.

    Google Scholar 

  • Sergeeva E., Liaimer A., Bergman B. (2002). Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta, 215: 229–238.

    CAS  PubMed  Google Scholar 

  • Shang H., Chen J., Handelsman J., Goodman R.M. (1999). Behavior ofPythium torulosum zoospores during their interaction with tobacco roots andBacillus cereus. Curr. Microbiol., 38: 199–204.

    CAS  PubMed  Google Scholar 

  • Sharifi-Tehrani A., M. Zala, A. Natsch, Y. Moenne-Loccoz, Défago G. (1998). Biocontrol of soilborne fungal plant diseases by 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur. J. Plant Pathol., 104: 631–643.

    CAS  Google Scholar 

  • Sharma A., Johri B.N., Sharma A.K., Glick B.R. (2003). Plant growth-promoting bacteriumPseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol. Biochem., 35: 887–894.

    CAS  Google Scholar 

  • Shi Y., Xu W., Yuan M., Tang M., Chen J., Pang Y. (2004). Expression of vip1/vip2 genes inEscherichia coli andBacillus thuringiensis and the analysis of their signal peptides. J. Appl. Microbiol., 97: 757–765.

    CAS  PubMed  Google Scholar 

  • Silo-Suh L.A., Lethbridge B.J., Raffel S.J., He H., Clardy J., Handelsman J. (1994). Biological activities of two fungistatic antibiotics produced byBacillus cereus UW85. Appl. Environ. Microbiol., 60: 2023–2030.

    CAS  PubMed  Google Scholar 

  • Silo-Suh L.A., Stabb E.V., Raffel S.J., Handelsman J. (1998). Target range of zwittermicin A, an aminopolyol antibiotic fromBacillus cereus. Curr. Microbiol., 37: 6–11.

    CAS  PubMed  Google Scholar 

  • Singh S., Kapoor K.K. (1999). Inoculation with phosphate solubilizing microorganisms and a vesicular arbuscular mycorrhizalfungus improves dry matter yield and nutrient uptake bywheat grown in a sandy soil. Biol. Fertil. Soils, 28: 139–144.

    CAS  Google Scholar 

  • Smith K.P., Havey M.J., Handelsman J. (1993). Suppression of cottonyleak of cucumber withBacillus cereus strain UW85. Plant Dis., 77: 139–142.

    Google Scholar 

  • Smith T.J., Blackman S.A., Foster S.J. (2000). Autolysins ofBacillus subtilis: multiple enzymes with multiple functions. Microbiology, 146: 249–262.

    CAS  PubMed  Google Scholar 

  • Stabb E.V., Handelsman J. (1998). Genetic analysis of zwittermicin A resistance inEscherichia coli: effects on membrane potential and RNA polymerase. Mol. Microbiol., 27: 311–322.

    CAS  PubMed  Google Scholar 

  • Staniscuaski F., Ferreira-Da Silva C.T., Mulinari F., Pires-Alves M., Carlini C.R. (2005). Insecticidal effects of canatoxin on the cotton stainer bugDysdercus peruvianus (Hemiptera: Pyrrhocoridae). Toxicon, 45: 753–760.

    CAS  PubMed  Google Scholar 

  • Tehrani A.S., Disfani F.A., Hedjaroud G.A., Mohammadi M. (2001). Antagonistic effects of several bacteria onVerticillium dahliae the causal agent of cotton wilt. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet., 66: 95–101.

    CAS  PubMed  Google Scholar 

  • Tellam R.L., Wijffels G., Willadsen P. (1999). Peritrophic matrix proteins. Insect Biochem. Molec. Biol., 29: 87–101.

    CAS  Google Scholar 

  • Terra W.R. (2001). The origin and function of the insect peritrophic membrane and peritrophic gel. Arch. Insect Biochem. Physiol., 47: 47–61.

    CAS  PubMed  Google Scholar 

  • Theis T., Stahl U. (2004). Antifungal proteins: targets, mechanisms and prospective applications. Cell. Mol. Life Sci., 61: 437–455.

    CAS  PubMed  Google Scholar 

  • Thomas P.W., Stone E.M., Costello A.L., Tierney D.L., Fast W. (2005). The quorum-quenching lactonase fromBacillus thuringiensis is a metalloprotein. Biochemistry, 44: 7559–7569.

    CAS  PubMed  Google Scholar 

  • Torreblanca M., Meseguer I., Ventosa A. (1994). Production of halocin is a practically universal feature of archael halophilic rods. Lett. Appl. Microbiol., 19: 201–205.

    CAS  Google Scholar 

  • Turnbull P.C., Hutson R.A., Ward M.J., Jones M.N., Quinn C.P., Finnie N.J., Duggleby C.J., Kramer J.M., Melling J. (1992).Bacillus anthracis but not always anthrax. J. Appl. Bacteriol., 72: 21–28.

    CAS  PubMed  Google Scholar 

  • Uroz S., Oger P., Chhabra S. R., Cámara M., Williams P., Dessaux Y. (2007).N-acyl homoserine lactones are degraded via an amidolytic activity inComamonas sp. strain D1. Arch. Microbiol., 187: 249–256.

    CAS  PubMed  Google Scholar 

  • Uroz S., Chhabra S.R., Càmara M., Williams P., Oger P.M., Dessaux Y. (2005). N-acylhomoserine lactone quorum-sensing molecules are modiWed and degraded byRhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology, 151: 3313–3322.

    CAS  PubMed  Google Scholar 

  • Vadlamudi R.K., Weber E., Ji I., Ji T.H., Bulla L., Jr A. (1995). Cloning and expression of a receptorfor an insecticidal toxin ofBacillus thuringiensis. J. Biol. Chem., 270: 5490–5494.

    CAS  PubMed  Google Scholar 

  • van Netten P., van De Moosdijk A., van Hoensel P., Mossel D.A., Perales I. (1990). Psychrotrophic strains ofBacillus cereus producing enterotoxin. J. Appl. Bacteriol., 69: 73–79.

    PubMed  Google Scholar 

  • Vessey J.K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255: 571–586.

    CAS  Google Scholar 

  • von Wiren N., Khodr H., Hider R.C. (2000) Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron (III). Plant Physiol., 124: 1149–1157.

    Google Scholar 

  • Wakelin S.A., Warren R.A., Ryder M.H. (2004). Effect of soil properties on growth promotion of wheat byPenicillium radicum. Aust. J. Soil Res., 42: 897–904.

    Google Scholar 

  • Wang C., Knill E., Glick B.R., Defago G. (2000). Effect of transferring 1-aminocyclopropoane-1-carboxylic acid (ACC) deaminase genes intoPseudomonas fluorescens strain CH40 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can. J. Microbiol., 46: 898–907.

    CAS  PubMed  Google Scholar 

  • Warren G.W. (1997). Vegetative insecticidal proteins: Novel proteinsfor control of corn pests. In: Carozzi N., Koziel M., Eds, Advances in Insect Control: The Role of Transgenic Plants, Taylor and Francis Ltd. London, UK, pp. 109–121.

    Google Scholar 

  • Wei J.Z., Hale K., Carta L., Platzer E., Wong C., Fang S.C., Aroian R.V. (2003).Bacillus thuringiensis crystal proteins that target nematodes. Proc. Nat. Acad. Sci., 100: 2760–2765.

    CAS  PubMed  Google Scholar 

  • Wenbo M., Sebestianova S.B., Sebestian J., Burd G.I., Guinel F.C., Glick B.R. (2003). Prevalence of 1-aminocyclopropane-1-carboxylate deaminase inRhizobium spp. Antoine van Leeuwenoek, 83: 285–291.

    Google Scholar 

  • White F.F., Ziegler S.F. (1991). Cloning of the genes for indoleaceticacid synthesis fromPseudomonas syringae pv.syringae. Mol. Plant-Microbe Interact., 4: 207–210.

    CAS  Google Scholar 

  • Whitehead N.A., Barnard A.M., Slater H., Simpson N.J., Salmond G.P. (2001). Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev., 25: 365–404.

    CAS  PubMed  Google Scholar 

  • Wilson M.K., Abergel R.J., Raymond K.N., Arceneaux J.E.L., Byers B.R. (2006). Siderophores ofBacillus anthracis, Bacillus cereus andBacillus thuringiensis. Biochim. Biophys. Res. Comm., 348: 320–325.

    CAS  Google Scholar 

  • Wirth M.C., Delécluse A., Walton W.E. (2001). Cyt1Ab1 and Cyt2Ba2 fromBacillus thuringiensis subsp.medellin andB. thuringiensis subsp.israelensis synergiesBacillus sphaericus againstAedes aegypti and resistantCulex quinquefasciatus (Diptera: Culicidae). Appl. Environ. Microbiol., 67: 3280–3284.

    CAS  PubMed  Google Scholar 

  • Wiwat C., Thaithanun S., Pantuwatana S., Bhumiratana A. (2000). Toxicity of chitinase-producingBacillus thuringiensis ssp.kurstaki HD-1 (G) towardPlutella xylostella. J. Invert. Pathol., 76: 270–277.

    CAS  Google Scholar 

  • Wu J., Zhao F., Bai J., Deng G., Qin S., Bao Q. (2007). Evidence for positive Darwinian selection of Vip gene inBacillus thuringiensis. J. Gen. Genom., 34: 649–660.

    CAS  Google Scholar 

  • Wu S.C., Cao Z. H., Li Z.G., Cheung K.C., Wong M.H. (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125: 155–166.

    Google Scholar 

  • Tang X.J., He G.Q., Chen Q.H., Zhang X.Y., Ali M.A.M. (2004). Medium optimization for the production of thermal stabled-glucanase byBacillus subtilis SJF-1A5 using response surface methodology. Biores. Technol., 93: 175–181.

    CAS  Google Scholar 

  • Yagi K., Chujo T., Nojiri H., Omori T., Nishiyama M., Yamane H. (2001). Evidence for the presence of DNA-binding proteins involved in regulation of the expression of indole-3-pyruvic acid decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis inAzospirillum lipoferum FS. Biosci. Biotechnol. Biochem., 65: 1265–1269.

    CAS  PubMed  Google Scholar 

  • Yang C.Y., Pang J.C., Kao S.S., Tsen H.Y. (2003). Enterotoxigenicity and cytotoxicity ofBacillus thuringiensis strains and development of a process for Cry1Ac production. J. Agric. Food Chem., 51: 100–105.

    CAS  PubMed  Google Scholar 

  • Yehuda Z., Shenker M., Romheld V., Marschner H., Hador Y., Chen Y. (1996). The role of ligand exchange in the uptake of iron frommicrobial siderophores by gramineous plant. Plant Physiol., 112: 1273–1280.

    CAS  PubMed  Google Scholar 

  • Zhang L.H. (2003). Quorum quenching and proactive host defense. Trends Plant Sci., 8: 238–244.

    CAS  PubMed  Google Scholar 

  • Zhang M.Y., Lovgren A., Low M.G., Landen R. (1993). Characterization of an avirulent pleitropic mutant of the insect pathogenBacillus thuringiensis: reduced expression of flagellin and phospholipases. Infect. Immun., 64: 4947–4954.

    Google Scholar 

  • Zhao C., Luo Y., Song C., Liu Z., Chen S., Yu Z., Sun M. (2007). Identification of three zwittermicin A biosynthesis-related genes fromBacillus thuringiensis subsp.kurstaki strain YBT-1520. Arch. Microbiol., 187: 313–319.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Daffonchio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raddadi, N., Cherif, A., Ouzari, H. et al. Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains. Ann. Microbiol. 57, 481–494 (2007). https://doi.org/10.1007/BF03175344

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175344

Key words

Navigation