Skip to main content
Log in

Molecular nature of antigens implicated in immune neutropenias

  • Special Guest Lecture
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Granulocyte (neutrophil) antibodies can cause autoimmune neutropenia, drug-induced neutropenia, immune neutropenia after bone marrow transplantation, neonatal immune neutropenia, refractoriness to granulocyte transfusions as well as febrile and pulmonary transfusion reactions. In the last decade, considerable progress has been made in the characterization of the implicated antigens. In 1998, the Granulocyte Antigen Working Party of the ISBT introduced a new nomenclature for human neutrophil alloantigens (HNA), which is based on the antigens’ glycoprotein location. In the HNA nomenclature the immunogenic (glyco-) proteins are indicated by arabic numbers followed by a letter of the alphabet which identify the (glyco-) proteins’ polymorphisms, i.e. the specific antigens. Currently, seven HNA antigens are assigned to five systems. The HNA-1a, HNA-1b and HNA-1c antigens, the former NA1, NA2, and SH antigens, have been identified as polymorphic forms of the neutrophil Fcγreceptor IIIb (CD16b) encoded by three alleles. Recently, we could elucidate the primary structure of the HNA-2a antigen, the former NB1. We could identify the HNA-2a-bearing glycoprotein as a novel member of the Ly-6/uPAR superfamily which has been clustered meanwhile as CD177. The HNA-3a antigen, the former 5b, is located on a 70–95 kDa glycoprotein. However, its molecular basis is still unknown. Finally, the HNA-4a and HNA-5a antigens, the former MART and OND, were found to be caused by single nucleotide mutations in the αM (CD11b) and αL (CD11a) subunits of the leucocyte adhesion molecules (β3 integrins). The glycoproteins CD11b, CD16b, and CD177 have been found to be also frequent targets ofautoantibodies — approximately 30% of neutrophil autoantibodies are directed against CD16b. Characterization of granulocyte antigens have expanded our diagnostic tools by the introduction of genotyping techniques and immunoassays for antibody identification. In addition, it allowed new insights in the pathophysiology of immune neutropenias and transfusion reactions. Ongoing studies will further improve the prevention and management of granulocyte antibody-mediated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bux J, Jung KD, Kauth T, Mueller-Eckhardt C, et al. Serological and clinical aspects of granulocyte antibodies leading to alloimmune neonatal neutropenia.Transfus Med. 1992;2:143–149.

    Article  PubMed  CAS  Google Scholar 

  2. Lalezari P, Radel E. Neutrophil-specific antigens: Immunology and clinical significance.Semin Hematol. 1974;11:281–290.

    PubMed  CAS  Google Scholar 

  3. Popovsky MA, Moore SB. Diagnostic and pathogenetic considerations in transfusion-related acute lung injury.Transfusion. 1985;25:573–577.

    Article  PubMed  CAS  Google Scholar 

  4. Sazama K. Reports of 355 transfusion-associated deaths: 1976 through 1985.Transfusion. 1990;30:573–590.

    Article  Google Scholar 

  5. Williamson LM, Lowe S, Love EM, et al. Serious hazards of transfusion (SHOT) initiative: analysis of the first two annual reports.Br Med J. 1999;319:16–19.

    CAS  Google Scholar 

  6. Dutcher JP, Schiffer CA, Johnston GS, et al. Alloimmunization prevents the migration of transfused indium-111-labeled granulocytes to sites of infection.Blood. 1983;62:354–360.

    PubMed  CAS  Google Scholar 

  7. McCullough J, Clay ME, Hurd D, Richards K, Ludvigsen C, Forstrom L. Effect of leukocyte antibodies and HLA matching on the intravascular recovery, survival, and tissue localization of 111-Indium Granulocytes.Blood. 1986;67:522–528.

    PubMed  CAS  Google Scholar 

  8. Dahlke MB, Keashen M, Alavi JB, Koch PA, Eisenstaedt R. Granulocyte transfusions and outcome of alloimmunized patients with gram-negative sepsis.Transfusion. 1982;22:374–378.

    Article  PubMed  CAS  Google Scholar 

  9. Stroncek DF, Shapiro RS, Filipovich AH, Plachta LB, Clay ME. Prolonged neutropenia resulting from antibodies to neutrophil-specific antigen NB1 following bone marrow transplantation.Transfusion. 1993;33:158–163.

    Article  PubMed  CAS  Google Scholar 

  10. Will M, Bux J, Northoff H, et al. Severe immune-mediated pancytopenia following allo-SCT and dose-reduced conditioning.Blood. 2000;96:351b

    Google Scholar 

  11. Klumpp TR, Herman JH, Schnell MK, Goldberg SL, Mangan KF. Association between antibodies reactive with neutrophils, rate of neutrophil engraftment, and incidence of postengraftment neutropenia following BMT.Bone Marrow Transplantation. 1996;18:559–564.

    PubMed  CAS  Google Scholar 

  12. Bux J, Behrens G, Jäger G, Welte K. Diagnosis and clinical course of autoimmune neutropenia in infancy: Analysis of 240 cases.Blood. 1997;89:1027–1034.

    PubMed  CAS  Google Scholar 

  13. Bux J, Kisisel K, Nowak K, Spengel U, Mueller-Eckhardt C. Autoimmune neutropenia: clinical and laboratory studies in 143 patients.Ann Hematol. 1991;63:249–252.

    Article  PubMed  CAS  Google Scholar 

  14. Shastri KA, Logue GL. Autoimmune neutropenia.Blood. 1993; 81:1984–1995.

    PubMed  CAS  Google Scholar 

  15. Stroncek DF. Drug-induced immune neutropenia.Transfus Med Rev. 1993;7:268–274.

    PubMed  CAS  Google Scholar 

  16. Lalezari P, Bernard GE. An isologous antigen-antibody reaction with human neutrophiles, related to neonatal neutropenia.J Clin Invest. 1966;45:1741–1750.

    Article  PubMed  CAS  Google Scholar 

  17. Bux J, Kober B, Kiefel V, Mueller-Eckhardt C. Analysis of granulocyte-reactive antibodies using an immunoassay based upon monoclonal antibody-spec. immobilization of granulocyte antigens (MAIGA).Transfus Med. 1993;3:157–162.

    Article  PubMed  CAS  Google Scholar 

  18. Bux J, Stein EL, Santoso S, Mueller-Eckhardt C. NA gene frequencies in the German population determined by polymerase chain reaction with sequence-specific primers (PCR-SSP).Transfusion. 1995;35:54–57.

    Article  PubMed  CAS  Google Scholar 

  19. ISBT Granulocyte Antigen Working Party. Nomenclature of granulocyte alloantigens.Vox Sang. 1999;77:251.

    Article  Google Scholar 

  20. Shows TB, McAlpine PJ, Boucheix C, et al. Guidelines for human gene nomenclature.Cytogenet Cell Genet. 1987;46:11–28.

    Article  PubMed  CAS  Google Scholar 

  21. Kelton JG, Bebenek G. Granulocytes do not have surface ABO antigens.Transfusion. 1985;25:567–569.

    Article  PubMed  CAS  Google Scholar 

  22. Werner G, von dem Borne AEGKr, Bos MJE, et al. Localization of the human NA1 alloantigen on neutrophil Fcγ receptors. In: Reinherz EL, Haynes BF, Nadler LM, Bernstein ID (eds): Leukocyte typing II, Vol. III, New York, Springer, 109–121, 1986.

    Google Scholar 

  23. Bux J, Stein E-L, Bierling P, et al. Characterisation of a new alloantigen (SH) on the human neutrophil Fcγ Receptor IIIb.Blood. 1997;89:1027–1034.

    PubMed  CAS  Google Scholar 

  24. van de Winkel J, Capel PJA: Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications.Immunol Today. 1993;14:215–221.

    Article  PubMed  Google Scholar 

  25. Hibbs ML, Tolvanen M, Carpen O: Membrane-proximal Iglike domain of FcγRIII (CD16) contains residues critical for ligand binding.J Immunol. 1994;152:4466–4474.

    PubMed  CAS  Google Scholar 

  26. Ravetch JV, Perussia B. Alternative membrane forms of FcRIII (CD16) on human natural killer cells and neutrophils.J Exp Med. 1989;170:481–497.

    Article  PubMed  CAS  Google Scholar 

  27. Ory PA, Clark MR, Kwoh EE, Clarkson SB, Goldstein IM. Sequences of complementary DNAs that encode the NA1 and NA2 forms of Fc receptor III on human neutrophils.J Clin Invest. 1989;84:1688–1691.

    Article  PubMed  CAS  Google Scholar 

  28. Koene HR, Kleijer M, Roos D, de Haas M, von dem Borne AEGKr. FcRIIIB gene duplication: Evidence for presence and expression of three distinct FcRIIIB genes in NA(1+,2+)SH(+) individuals.Blood. 1998;91:673–679.

    PubMed  CAS  Google Scholar 

  29. Steffensen R, Glen T, Varming K, Jersild C. FcRIIIB polymorphism: evidence that NA1/NA2 and SH are located in two closely linked loci and that the SH allele is linked to the NA1 allele in the Danish population.Transfusion. 1999:39: 593–598.

    Article  PubMed  CAS  Google Scholar 

  30. Kissel K, Hofmann C, Santoso S, Daniels G, Bux J. HNA-1a, HNA-1b, and HNA-1c (NA1, NA2, SH) Frequencies in African and American Blacks and in Chinese.Tissue Antigens. 2000;56:143–148.

    Article  PubMed  CAS  Google Scholar 

  31. Fromont P, Bettaieb A, Skouri H, et al. Frequency of the polymorphonuclear Fcreceptor III deficiency in the French population and its involve-ment in the development of neonatal alloimmune neutropenia.Blood. 1992;79:2131–2134.

    PubMed  CAS  Google Scholar 

  32. Muniz-Diaz, Madoz P, de la Calle Martin O, Puig L. The polymorphonuclear neutrophil FcRIIIB deficiency is more frequent than hitherto assumed.Blood. 1995;86:3999.

    PubMed  CAS  Google Scholar 

  33. Chu CC, Lee HL, Chu TW, Lin M. Genotyping of human platelet antigen system 1–5 and neutrophil antigen in Taiwan [Abstract].Vox Sang. 2000;78(S1):P038.

    Google Scholar 

  34. Haas de M, Kleijer M, van Zwieten R, Roos D, von dem Borne AEGKr. Neutrophil FcγRIIB deficiency, nature and clinical consequences: a study of 21 individuals from 14 families.Blood. 1995;86:2403–2413.

    PubMed  Google Scholar 

  35. Goldschmeding R, van Dalen CM, Faber N, et al. Further characterization of the NB1 antigen as a variably expressed 56–62 kD GPI-linked glycoprotein of plasma membranes and specific granules of neutrophils.Br J Haematol. 1992;81:336–345.

    Article  PubMed  CAS  Google Scholar 

  36. Stroncek DF, Skubitz KM, McCullough JJ. Biochemical characterization of the neutrophil-specific antigen NB1.Blood. 1990;75:744–755.

    PubMed  CAS  Google Scholar 

  37. Kissel K, Santoso S, Hofmann C, Stroncek D, Bux J. Molecular basis of the neutrophil glycoprotein NB1 (CD177) involved in the pathogenesis of immune neutropenias and transfusion reactions.Eur J Immunol. 2001, in press.

  38. Kissel K, Scheffler S, Bux J. Molecular basis of the NB1 (HNA-2a)-negative deficiency.Blood. 2002 (in press).

  39. Nordhagen R, Conradi M, Drmtorp SM. Pulmonary reaction associated with transfusion of plasma containing anti-5b.Vox Sang. 1986;51:102–107.

    Article  PubMed  CAS  Google Scholar 

  40. de Haas M, Muniz-Diaz E, Alonso LD, et al. Neutrophil antigen 5b is carried by a protein, migrating from 70 to 95 kDa, and may be involved in nenatal alloimmune neutropenia.Transfusion. 2000;40:222–227.

    Article  PubMed  Google Scholar 

  41. Simsek S, van der Schoot CE, Daams M, et al. Molecular characterization of antigenic polymorphisms (ONDa and MARTa) of the b2 family recognized by human leukocyte alloantisera.Blood. 1996;88:1350–1358.

    PubMed  CAS  Google Scholar 

  42. Chu CC, Lee H-L, Chu TW, Lin M. The use of genotyping to predict the phenotypes of human platelet antigens 1 through 5 and of neutrophil antigens in Taiwan.Transfusion. 2001;41:1553–1558.

    Article  PubMed  CAS  Google Scholar 

  43. Otho H, Matsuo Y. Neutrophil-specific antigens and gene frequencies in Japanese.Transfusion. 1989;29:654.

    Google Scholar 

  44. Hessner MJ, Curtis BR, Endean DJ, Aster RH. Determination of neutrophil antigen frequencies in five ethnic groups by polymerase chain reaction with sequence-specific primers. Transfusion 1996;36:895–899.

    Article  PubMed  CAS  Google Scholar 

  45. Hessner MJ, Shivaram SM, Dinauer DM, Curtis BR, Endean DJ, Aster RH. Neutrophil antigen FcRIIIB) SH gene frequencies in six racial groups.Blood. 1999;93:1115–1116.

    PubMed  CAS  Google Scholar 

  46. Fuijwara K, Watanabe Y, Mitsunga S, et al. Determination of granulocyte-specific antigens on neutrophil Fcγreceptor IIIb by PCR-preferential homoduplex formation assay, and gene frequencies in the Japanese population. (Vox Sang. 1999;77 218–222.

    Article  Google Scholar 

  47. Kuwano ST, Bordin JO, Chiba AK, et al. Allelic polymorphisms of human Fcγreceptor IIa and Fcγreceptor. IIIb among distinct groups in Brazil.Transfusion. 2000;40:1388–1392.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Bux, J. Molecular nature of antigens implicated in immune neutropenias. Int J Hematol 76 (Suppl 1), 399–403 (2002). https://doi.org/10.1007/BF03165292

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03165292

Keywords

Navigation