Skip to main content
Log in

Regional changes of polyamine profiles after reversible cerebral ischemia in mongolian gerbils: Effects of nimodipine and barbiturate

  • Original Articles
  • Published:
Neurochemical Pathology

Abstract

The present experiments were undertaken to study whether the therapeutic inhibition of ischemic cell injury affects the postischemic disturbances in polyamine metabolism. Near complete forebrain ischemia was produced in Mongolian gerbils (Meriones unguiculatus) by occluding both common carotid arteries. Gerbils were subjected to 5 min cerebral ischemia and then immediately upon recirculation injected intraperitoneally with nimodipine (1.5 mg/kg;n=5) or pentobarbital (50 mg/kg;n=5). Untreated animals received the nimodipine vehicle whilst sham-operated animals served as controls. Following 96 h recirculation animals were reanesthetized and brains were frozen in liquid nitrogen. Polyamines (putrescine, spermidine, and spermine) were measured in samples (2–4 mg each) taken from the cerebral cortex and the CA1-subfield of the hippocampus. In addition, 10 μm thick coronal sections were prepared from the level of the dorsal hippocampus to determine histologically the extent of ischemic neuronal damage; this was quantified in the CA1-subfield of the hippocampus by counting the number of total and viable neurons/mm stratum pyramidale.

In untreated animals reversible cerebral ischemia produced a significant increase in putrescine and a decrease in spermine in the CA1-subfield of the hippocampus (increase in putrescine from 11.3±0.6 to 41.8±3.6 nmol/g,p<0.01; and decrease in spermine from 351±26 to 161±16 nmol/g,p<0.05). Spermidine, in contrast, did not change during recirculation in the hippocampus. In the cerebral cortex postischemic polyamine levels were not significantly different from those found in control animals. In all untreated animals subjected to reversible cerebral ischemia severe cell necrosis could be observed in the CA1-subfield of the hippocampus. It proved possible to inhibit significantly both ischemia-induced disturbances of polyamine metabolism and ischemic cell injury in the CA1-subfield of the hippocampus by barbiturate treatment (p<0.05). The effect of nimodipine on ischemic cell injury and ischemia-induced changes of polyamine levels was not significant. In all experimental animals the putrescine levels in the CA1-sector of the hippocampus correlated with the extent of ischemic cell damage in a threshold relationship: in animals in which the putrescine levels lay below 15 nmol/g less than 5% of neurons were damaged, whereas in animals with putrescine levels above 25 nmol/g only about 5% of neurons in the stratum pyramidale survived the 5 min cerebral ischemic period. We conclude that putrescine may be viewed as an important biochemical correlate of ischemic cell injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ODC:

Ornithine decarboxylase

SAMDC:

S-adenosylmethionine decarboxylase

References

  • Arai H., Passonneau J. V., and Lust W. D. (1986) Energy metabolism in delayed neuronal death of CA1 neurons of the hippocampus following transient ischemia in the gerbil.Metabol. Brain Dis. 1, 263–278.

    Article  CAS  Google Scholar 

  • Arnold P. E., van Putten V. J., Lumlertgul D., Burke, T. J., and Schrier R. W. (1986) Adenine nucleotide metabolism and mitochondrial Ca2+ transport following renal ischemia.Am. J. Physiol. 19, F357-F363.

    Google Scholar 

  • Bondy S. C. and Walker C. H. (1986) Polyamines contribute to calcium-stimulated release of aspartate from brain particulate fractions.Brain Res. 371, 96–100.

    Article  PubMed  CAS  Google Scholar 

  • Canellakis E. S., Viceps-Madore D., Kyriakidis D. A., and Heller J. S. (1979) The regulation and function of ornithine decarboxylase and of the polyamines.Curr. Top. Cell Regul. 15, 155–202.

    PubMed  CAS  Google Scholar 

  • Dienel G. A. (1984) Regional accumulation of calcium in postischemic rat brain.J. Neurochem. 43, 913–925.

    Article  PubMed  CAS  Google Scholar 

  • Flamm E. S., Demopoulos H. B., Seligman M. L., and Ransohoff J. (1977) Possible molecular mechanisms of barbiturate-mediate protection in regional cerebral ischemia.Acta Neurol. Scand. 56, (Suppl. 64), 150–151.

    Google Scholar 

  • Frydman B., Frydman R. B., De Los Santos C., Alonso Garrido D., Goldemberg S. H., and Algranti I. D. (1984) Putrescine, distribution inEscherichia coli studied in vivo by13C nuclear magnetic resonance.Biochim. Biophys. Acta 805, 337–344.

    Article  PubMed  CAS  Google Scholar 

  • Hallmayer J., Hossmann K. A., and Mies G. (1985) Low dose of barbiturates for prevention of hippocampal lesions after brief ischemic episodes.Acta Neuropath. (Berl.)68, 27–31.

    Article  CAS  Google Scholar 

  • Hass W. K. (1981) Beyond cerebral blood flow, metabolism and ischemic threshold: An examination of the role of calcium in the initiation of cerebral infarction. In: Cerebral Vascular Disease, vol. 3, Meyer J. S., Lechner H., Reivich M., Ott E. O. and Arabinar A., eds., Excerpta Medica, Amsterdam, pp. 3–17.

    Google Scholar 

  • Heby O. (1981) Role of polyamines in the control of cell proliferation and differentiation.Differentiation 19, 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Iqbal Z. and Koenig H. (1985) Polyamines appear to be second messengers in mediating Ca2+ fluxes and neurotransmitter release in potassium-depolarized synaptosomes.Biochem. Biophys. Res. Comm. 133, 563–573.

    Article  PubMed  CAS  Google Scholar 

  • Jänne, J., Pösö H., and Raina A. (1978) Polyamines in rapid growth and cancer.Biochim. Biophys. Acta 473, 241–293.

    PubMed  Google Scholar 

  • Kirino T. (1982) Delayed neuronal death in the gerbil hippocampus following ischemia.Brain Res. 239, 57–69.

    Article  PubMed  CAS  Google Scholar 

  • Kirino T., Tamura A., and Sano K. (1986) A reversible type of neuronal injury following ischemia in the gerbil.Stroke 17, 455–459.

    PubMed  CAS  Google Scholar 

  • Koenig H., Goldstone A., and Lu C. Y. (1983a) β-adrenergic stimulation of Ca2+-fluxes, endocytosis, hexose transport, and amino acid transport in mouse kidney is mediated by polyamine synthesis.Proc. Natl. Acad. Sci. USA 80, 7210–7214.

    Article  PubMed  CAS  Google Scholar 

  • Koenig H., Goldstone A., and Lu C. Y. (1983b) Polyamines regulate calcium fluxes in a rapid membrane response.Nature 305, 530–534.

    Article  PubMed  CAS  Google Scholar 

  • Koenig H., Goldstone A., and Lu C. Y. (1983c) Blood brain barrier breakdown in brain edema following cold injury is mediated by microvascular polyamines.Biochem. Biophys. Res. Comm. 116, 1039–1048.

    Article  PubMed  CAS  Google Scholar 

  • Komulainen H. and Bondy S. C. (1987) Transient elevation of intrasynaptosomal free calcium by putrescine.Brain. Res. 401, 50–54.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O. H., Passonneau J. V., Hasselberger F. Y., and Schulz D. W. (1964) Effects of ischemia on known substrates and cofactors of the glycolytic pathway in brain.J. Biol. Chem. 239, 18–30.

    PubMed  CAS  Google Scholar 

  • Mies G., Paschen W., Hossmann K. A., and Klatzo I. (1983) Simultaneous measurement of regional blood flow and metabolism during maturation of hippocampal lesions following short-lasting cerebral ischemia in gerbils.J. Cereb. Blood Flow Metabol. 3, (Suppl. 1), S329-S330.

    Google Scholar 

  • Nicchitta C. and Williamson J. R. (1984) Spermine: A regulator of mitochondrial calcium cycling.J. Biol. Chem. 259, 12978–12983.

    PubMed  CAS  Google Scholar 

  • Nicholls D. G. (1985) A role for the mitochondrion in the protection of cells against calcium overload?Prog. Brain Res. 63, 97–106.

    Article  PubMed  CAS  Google Scholar 

  • Nó L. (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system.J. Physiol. Neurol. 46, 113–177.

    Google Scholar 

  • Nowak T. S., Fried R. L., Lust W. D., and Passonneau J. V. (1985) Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil.J. Neurochem. 44, 487–494.

    Article  PubMed  CAS  Google Scholar 

  • Paschen W., Schmidt-Kastner R., Djuricic B., Meese C., Linn F., and Hossmann K.-A. (1987a) Polyamine changes in reversible cerebral ischemia.J. Neurochem. 49, 35–37.

    Article  PubMed  CAS  Google Scholar 

  • Paschen W., Hallmayer J., and Mies G. (1987b) Regional profile of polyamines in reversible cerebral ischemia of Mongolian gerbils.Neurochem. Pathol. 7, 143–156.

    Article  PubMed  CAS  Google Scholar 

  • Pegg A. E. (1986) Recent advances in the biochemistry of polyamines in eukaryotes.Biochem. J. 234, 249–262.

    PubMed  CAS  Google Scholar 

  • Pegg A. E. and McCann P. P. (1982) Polyamine metabolism and function.Am. J. Physiol. 243, C212-C221.

    PubMed  CAS  Google Scholar 

  • Pegg A. E., Seely J. E., Pösö H., Della Ragione F., and Zagon I. S. (1982) Polyamine biosynthesis and interconversion in rodent tissue.Fed. Proc. 41, 3065–3072.

    PubMed  CAS  Google Scholar 

  • Sakamoto N., Kogure K., Kato H., and Ohtomo H. (1986) Disturbed Ca2+-homeostasis in the gerbil hippocampus following brief transient ischemia.Brain Res. 364, 372–376.

    Article  PubMed  CAS  Google Scholar 

  • Seiler N. (1981) Polyamine metabolism and function in the brain.Neurochem. Int. 3, 95–110.

    Article  CAS  Google Scholar 

  • Seiler N. and Deckardt K. (1976) Association of putrescine, spermidine, spermine, and GABA with structural elements of brain cells.Neurochem. Res. 1, 469–499.

    Article  Google Scholar 

  • Shiu G. K., Nemmer J. P., and Nemoto E. M. (1983) Reassessment of brain free fatty acid liberation during global ischemia and its attenuation by barbiturate anesthesia.J. Neurochem. 40, 880–884.

    Article  PubMed  CAS  Google Scholar 

  • Siesjö B. K. (1981) Cell damage in the brain: A speculative synthesis.J. Cereb. Blood Flow Metabol. 1, 155–185.

    Google Scholar 

  • Soliman K. F. A., Udoye M. O., Iramain C. A., and Walker C. A. (1982) Diurnal variation in ornithine decarboxylase activity of different brain regions of the rat.Neurosci. Lett. 33, 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki R., Yamaguchi T., Li L.-C., and Klatzo I. (1983) The effects of 5-minute ischemia in Mongolian gerbils: II. Changes in spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus.Acta Neuropath. (Berl.)60, 217–222.

    Article  CAS  Google Scholar 

  • Trout J. J., Koenig H., Goldstone A. D., and Lu C. Y. (1986) Blood-brain barrier breakdown by cold injury. Polyamine signals mediate acute stimulation of endocytosis, vesicular transport, and microvillus formation in rat cerebral capillaries.Lab. Invest. 55, 622–631.

    PubMed  CAS  Google Scholar 

  • Vibulsresth S., Dietrich W. D., Busto R., and Ginsberg M. D. (1987) Failure of nimodipine to prevent ischemic neuronal damage in rats.Stroke 18, 210–216.

    PubMed  CAS  Google Scholar 

  • William-Ashman H. G. and Canellakis Z. N. (1979) Polyamines in mammalian biology and medicine.Perspect. Biol. Med. 22, 421–438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paschen, W., Hallmayer, J. & Röhn, G. Regional changes of polyamine profiles after reversible cerebral ischemia in mongolian gerbils: Effects of nimodipine and barbiturate. Neurochemical Pathology 8, 27–41 (1988). https://doi.org/10.1007/BF03160133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03160133

Index Entries

Navigation