Skip to main content
Log in

Three-nucleon calculations with local potentials

Вычисления для трех ядер с помощью локальных потенциалов

  • Published:
Acta Physica Academiae Scientiarum Hungaricae

Abstract

The integral equations approach to the three-nucleon problem is reviewed. The results of different calculations with local potentials are compared.

Резюме

Рассматриваются интегральные уравнения, связанные с проблемой трех ядер. Сравниваются результаты различных вычислений с помощью локальных потеницалов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The basic definitions of multichannel scattering theory are given in several textbooks. Original papers are:H. Ekstein, Phys. Rev.,101, 880, 1956 and further references cited inT. F. Jordan, J. Math. Phys.,3, 429, 1962. See alsoW. Brenig andR. Haag, Fortschr. Physik7, 183, 1959 and the bibliography given in [3].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. L. D. Faddeev, Zh. Eksperim. i Teor. Fiz.,39, 1459, 1960 [English transl.: Soviet Phys. — JETP,12, 1014, 1961]; Dokl. Akad. Nauk SSR,138, 565, 1961 [English transl.: Soviet Phys. — Doklady,6, 384, 1961]; Dokl. Akad. Nauk SSR145, 301, 1962, [English transl.: Soviet Phys. — Doklady,7, 600, 1963]. For early attempts see [6] andG. V. Skornjakov andK. A. Ter-Martirosjan, JETP,31, 775, 1956.

    MathSciNet  Google Scholar 

  3. L. D. Faddeev, Mathematical aspects of the three-body problem in the quantum scattering theory, Publications of the Steklov Mathematical Institute (Leningrad, 1963) No. 69; [English transl.: Israel Program for Scientific Translation, Jerusalem, 1965, distributed by Oldbourne Press, London].

    Google Scholar 

  4. The specialFaddeev-type equations (3.1) were introduced in [5]. They are best suited for the quasiparticle method developed there and described in Section 6 of this talk. (Compare also the equations given in [9] and [10]).

  5. E. O. Alt, P. Grassberger andW. Sandhas, Nucl. Phys.,B2, 167, 1967.

    Article  ADS  Google Scholar 

  6. K. M. Watson, Phys. Rev.,89, 575, 1953. Compare alsoK. M. Watson andJ. Nuttall, Topics in Several Particle Dynamics, Holden-Day, San Francisco, 1967.

    Article  MATH  ADS  Google Scholar 

  7. R. J. Glauber, in: High Energy Physics and Nuclear Structure, ed.: G. Alexander (North Holland, Amsterdam, 1967).

    Google Scholar 

  8. A. Ahmadzadeh andJ. A. Tjon, Phys. Rev.,139, B1085, 1965.

    Article  ADS  Google Scholar 

  9. C. Lovelace, in: Strong Interactions and High Energy Physics, ed.: R. G. Moorhouse (Oliver and Boyd, London, 1964).

    Google Scholar 

  10. C. Lovelace, Phys. Rev.,135, B1225, 1964.

    Article  ADS  MathSciNet  Google Scholar 

  11. Y. Yamaguchi, Phys. Rev.,95, 1628, 1954 and further references given in footnote 28 of [10]. Note the difference in the definition of the form factors χγ introduced in Eq. (5.2) and in the preceding section.

    Article  ADS  Google Scholar 

  12. A. N. Mitra, Nucl. Phys.,32, 529, 1962; Phys. Rev.,139, B1472, 1965.A. N. Mitra andV. S. Bhasin, Phys. Rev.,131, 1265, 1963.A. N. Mitra, in Advances in Nuclear Physics, ed.: M. Baranger and E. Vogt (Plenum Press, Inc., New York, 1969), Vol. III.

    Article  MATH  Google Scholar 

  13. A. G. Sitenko andV. F. Kharchenko, Nucl. Phys.,49, 15, 1963.

    Article  Google Scholar 

  14. R. D. Amado, Phys. Rev.,132, 485, 1963;141, 902, 1966. See also [35] andR. D. Amado, Annual Review of Nuclear Science,19, 635, 1969.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. S. Weinberg, Phys. Rev.,131, 440, 1963.

    Article  ADS  MathSciNet  Google Scholar 

  16. See, e. g., [9], [10], [15], andK. Meetz, J. Math. Phys.,3, 690, 1962.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Compare alsoJ. H. Sloan, Phys. Rev.,165, 1587, 1968;M. G. Fuda, Phys. Rev.,166, 1064, 1968;F. Riordan, Nuovo Cimento,54, A552, 1968;L. Rosenberg, Phys. Rev.,168, 1756, 1968;R. Yaes, Phys. Rev.,170, 1236, 1968.

    Article  ADS  Google Scholar 

  18. As shown in [25], Appendix C, expression (6.3) can be transformed into a simpler form which is also found directly by application of the quasiparticle concept to the three-body Lippmann — Schwinger equation. (P. Grassberger andW. Sandhas, Z. Physik,217, 9, 1968).

    Article  ADS  Google Scholar 

  19. J. Carew andL. Rosenberg, Phys. Rev.,177, 2599, 1969.E. O. Alt, P. Grassberger andW. Sandhas, to be published.

    Article  ADS  Google Scholar 

  20. J. W. Humberston, R. L. Hall andT. A. Osborn, Phys. Lett.,27B, 195, 1968.

    ADS  Google Scholar 

  21. R. A. Malfliet andJ. A. Tjon, Nucl. Phys.,A127, 161, 1969.

    Article  Google Scholar 

  22. Y. E. Kim, J. Math. Phys.,10, 1491, 1969; Phys. Lett.,29B, 411, 1969.

    Article  ADS  Google Scholar 

  23. J. S. Ball andD. Y. Wong, Phys. Rev.,169, 1362, 1968.

    Article  ADS  Google Scholar 

  24. I also mention similar calculations byB. Akhmadkhodzhaev, V. B. Belyaev andE. Wrzencionko, JETP Lett.,9, 433, 1969.

    ADS  Google Scholar 

  25. E. O. Alt, P. Grassberger andW. Sandhas, Phys. Rev.,D1, 2581, 1970.

    ADS  Google Scholar 

  26. E. O. Alt, P. Grassberger andW. Sandhas, Nuovo Cimento, (in press).

  27. J. A. Tjon, Phys. Rev.,D1, 2109, 1970.

    Article  ADS  Google Scholar 

  28. E. O. Alt, P. Grassberger andW. Sandhas, loc. cit. (Ref. 19). Note that the 1. QBA in Fig. 10 is taken from this reference where the corresponding results of Ref. 25 are improved by optimizing the form factors.

    Article  Google Scholar 

  29. V. F. Kharchenko andN. M. Petrov, Nucl. Phys.,A137, 417, 1969;V. F. Kharchenko andS. A. Storozhenko, Nucl. Phys.,A137, 437, 1969.

    Article  Google Scholar 

  30. M. Fuda, Phys. Rev.,178, 1682, 1969.

    Article  ADS  Google Scholar 

  31. The situation till 1969 has been reviewed byL. M. Delves andA. C. Phillips, Revs. Mod. Phys.,41, 497, 1969.

    Article  ADS  Google Scholar 

  32. D. Hurst andJ. Alcock, Can. J. Phys.,29, 36, 1951.

    Google Scholar 

  33. W. T. H. van Oers andJ. D. Seagrave, Phys. Lett.,24B, 562, 1967.

    ADS  Google Scholar 

  34. V. S. Bhasin, G. L. Schrenk andA. N. Mitra, Phys. Rev.,137, B398, 1965.

    Article  ADS  Google Scholar 

  35. R. Aaron, R. D. Amado andY. Y. Yam, Phys. Rev.,140, B1291, 1965.

    Article  ADS  Google Scholar 

  36. A. C. Phillips, Phys. Rev.,142, 984, 1966.

    Article  ADS  MathSciNet  Google Scholar 

  37. E. O. Alt andW. Sandhas, to be published.

  38. This is discussed by other speakers at this conference.

  39. R. A. Malfliet andJ. A. Tjon, Phys. Lett.,30B, 293, 1969; Ann. Phys. (N. Y.)61, 425, 1970. I also refer toMalfliet’s talk at this conference.

    ADS  Google Scholar 

  40. Calculations with other more complicated local potentials have also been performed byY. E. Kim andA. Tubis, Phys. Rev.,C1, 1627, 1970.V. B. Belyaev, E. Wrzecionko andA. L. Zubarev, Yadern, Fiz.,12, 923, 1970.

    Article  ADS  Google Scholar 

  41. This picture is taken from [35] with the 1. QBA result from [37] drawn in.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandhas, W. Three-nucleon calculations with local potentials. Acta Physica 33, 109–127 (1973). https://doi.org/10.1007/BF03158000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03158000

Keywords

Navigation