Skip to main content
Log in

Heat transfer to power-law fluids in thermal entrance region with viscous dissipation for constant heat flux conditions

  • Published:
Proceedings of the Indian Academy of Sciences - Section A Aims and scope Submit manuscript

Abstract

An analytical solution of the heat transfer problem with viscous dissipation for non-Newtonian fluids with power-law model in the thermal entrance region of a circular pipe and two parallel plates under constant heat flux conditions is obtained using eigenvalue approach by suitably replacing one of the boundary conditions by total energy balance equation. Analytical expressions for the wall and the bulk temperatures and the local Nusselt number are presented. The results are in close agreement with those obtained by implicit finite-difference scheme. It is found that the role of viscous dissipation on heat transfer is completely different for heating and cooling conditions at the wall. The results for the case of cooling at the wall are of interest in the design of the oil pipe line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A,B :

constants of integration

b :

half of the distance between parallel plates

Br :

Brinkman number defined by equations (8) and (35)

C 0 :

constant

C p :

specific heat at constant pressure

D m,D p :

constants defined by equations (23) and (45) respectively

F :

function in equation (10)

G m,G p :

constants defined by equations (25) and (47) respectively

h :

heat transfer coefficient

k :

thermal conductivity

K m,K p :

constants defined by equations (26) and (48) respectively

L :

length of the plate

m, n :

parameters in power-law model

Nu, Nup :

local Nusselt numbers defined by equations (29) and (52) respectively

P :

Pressure

Pr :

Prandtl number

q w :

heat flux

r :

radial distance

R :

radius of the pipe

Re :

Reynolds number

S :

pressure gradient inx-direction —dP/dx = constant

T :

temperature

T c :

constant defined by equation (8)

v :

velocity

V max :

maximum velocity

x :

axial distance

y :

distance perpendicular to the plate

Y m,Y p :

eigenfunctions

βm, βp :

eigenvalues

η:

dimensionless radial distance

θ:

dimensionless temperature

\(\bar \theta \) :

dimensionless temperature defined by equation (16)

θb :

dimensionless bulk temperature

θw :

dimensionless wall temperature

λ:

constant

μ:

viscosity

ν:

kinematic viscosity

ρ:

density

τrxxy):

shear stress defined by equation (1)

ψ:

dimensionless axial distance defined by equations (8) and (35).

a :

asymptotic condition

c :

critical value

f :

fully developed

o :

inlet condition

w :

wall condition

x :

axial component

References

  1. Lyche, B. C. and Bird, R. B.,Chem. Eng. Sci. 6 35 (1956).

    Article  Google Scholar 

  2. Forsyth, T. H. and Murphy, N. F.,A.I.Ch.E.J. 15 758 (1969).

    Google Scholar 

  3. Tien, G.,Can. J. Chem. Eng. 39 45 (1961).

    Google Scholar 

  4. Vlachopoulos, J. and Keung, C. K. J.,A.I.Ch.E.J. 18 1972 (1972).

    Google Scholar 

  5. Foraboschi, F. P. and Federico, I. D.,Int. J. Heat Mass Transfer 7 315 (1964).

    Article  MATH  Google Scholar 

  6. Payvar, P.,Appl. Sci. Res. 27 297 (1973).

    Article  Google Scholar 

  7. Kooijman, J. M.,Chem. Eng. Sci. 28 1149 (1973).

    Article  Google Scholar 

  8. Ou, J. W. and Cheng, K. C.,Appl. Sci. Res. 28 289 (1973).

    Google Scholar 

  9. Bird, R. B., Steward, W. E., and Lightfoot, E. N.,Transport Phenomena, John Wiley, New York (1960).

    Google Scholar 

  10. Brown, G. M.,A.I.Ch.E.J. 6 179 (1959).

    Google Scholar 

  11. Siegel, R., Sparrow, E. M. and Hallman, T. M.,Appl. Sci. Res. A 7 386 (1958).

    MathSciNet  Google Scholar 

  12. Cess, R. D. and Schaffer, E. C.,Appl. Sci. Res. A 8 339 (1959).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundaram, K.M., Nath, G. Heat transfer to power-law fluids in thermal entrance region with viscous dissipation for constant heat flux conditions. Proc. Indian Acad. Sci. 83, 50–64 (1976). https://doi.org/10.1007/BF03051191

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03051191

Keywords

Navigation