Skip to main content
Log in

A study of cotyledon senescence in cucumber (Cucumis sativus L.) based on expressed sequence tags and gene expression

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Cucumber cotyledons provide an excellent experimental system in which to investigate developmental changes in gene expression, from the early phase of heterotrophism through phototrophic growth to senescence. A cDNA library was prepared from the final stage of senescing cucumber cotyledons (<95% yellow) for studying the genes responsible for lipid mobilization during germination and senescence. This library had produced numerous senescence-associated clones in a previous study. Here, a total of 365 cDNA clones and their expression levels were examined via semi-quantitative RT-PCR. Up-regulation of expression was detected for several known and unknown genes. These results were used to investigate the possible functions for senescence-related genes during cotyledon development

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Altschul SF, Glash W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Basset P, Bellocq JR Wolf C, Stall I, Hutin P, Limmacher JM, Podhajcer OL, Chenard MP, Rio C, Chambon P (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348: 699–704

    Article  PubMed  CAS  Google Scholar 

  • Beevers H (1961) Metabolic production of sucrose from fat. Nature 191: 433–436

    Article  PubMed  CAS  Google Scholar 

  • Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Bjorkbacka H, Birve SJ, Karlsson J, Gardestrom P, Gustafsson R Lundeberg J, Jansson S (2003) Gene expression in autumn leaves. Plant Physiol 131: 430–442

    Article  PubMed  Google Scholar 

  • Brown JH, Paliyath G, Thompson JE (1991) Physiological mechanisms of plant senescence.In FC Steward, ed, Plant Physiology. Academic Press, San Diego, pp 227–275

    Google Scholar 

  • Buchanan-Wollaston V (1994) Isolation of cDNA clones for genes that are expressed during leaf senescence inBras-sica napus. Identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiol 105: 839–846

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V, Ainsworth C (1997) Leaf senescence inBrassica napus: Cloning of senescence related genes by subtractive hybridization. Plant Mol Biol 33: 821–834

    Article  PubMed  CAS  Google Scholar 

  • Chaloupkova K, Smart CC (1994) The abscisic acid induction of a novel peroxidase is antagonized by cytokinin inSpirodela polyrrhiza L. Plant Physiol 105: 497–507

    Article  PubMed  CAS  Google Scholar 

  • Delorme VG, McCabe PF, Kim DJ, Leaver CJ (2000) A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber. Plant Physiol 123: 917–927

    Article  PubMed  CAS  Google Scholar 

  • Flierman D, Ye Y, Dai M, Chau V, Rapoport TA (2003) Poly-ubiquitin serves as a recognition signal, rather than a ratcheting molecule, during retrotranslocation of proteins across the endoplasmic reticulum membrane. J Biol Chem 278: 34774–34782

    Article  PubMed  CAS  Google Scholar 

  • Frank MR, Deyneka JM, Schuler MA (1996) Cloning of phenylpropanoid pathway P450 monoxygenases expressed inPisum sativum. Plant Physiol 110: 1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Can S, Amasino RM (1997) Making sense of senescence. Plant Physiol 113: 313–319

    Google Scholar 

  • Godiard L, Sauviac L, Dalbin N, Liaubet L, Callard D, Czer-nic P, Marco Y (1998)CYP76C2, an Arabidopsis thaliana cytochrome P450 gene expressed during hypersensitive and developmental cell death. FEBS Lett 438: 245–249

    Article  PubMed  CAS  Google Scholar 

  • Graham JS, Xiong J, Gillikin JW (1991) Purification and developmental analysis of a metalloproteinase from the leaves ofGlycine max. Plant Physiol 97: 786–792

    Article  PubMed  CAS  Google Scholar 

  • Graham IA, Leaver CJ, Smith SM (1992) Induction of malate synthase gene expression in senescent and detached organs of cucumber. Plant Cell 4: 349–357

    Article  PubMed  CAS  Google Scholar 

  • Gut H, Matile P (1988) Apparent induction of key enzymes of the glyoxylic acid cycle in senescent barley leaves. Planta 176: 548–550

    Article  CAS  Google Scholar 

  • Gut H, Matile P (1989) Breakdown of galactolipids in senescent barley leaves. Bot Acta 102: 31–36

    CAS  Google Scholar 

  • He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid inArabidopsis leaf senescence. Plant Physiol 128: 876–884

    Article  PubMed  CAS  Google Scholar 

  • Hell R, Jost R, Berkowitz O, Wirtz M (2002) Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plantArabidopsis thaliana. Amino Acids 22: 245–257

    Article  PubMed  CAS  Google Scholar 

  • Hinderhofer K, Zentgraf U (2001) Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213: 469–473

    Article  PubMed  CAS  Google Scholar 

  • Huang YJ, To KY, Yap MN, Chiang WJ, Suen DF, Chen SC (2001) Cloning and characterization of leaf senescence up-regulated genes in sweet potato. Physiol Plant 113: 384–391

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet 244: 563–571

    Article  PubMed  CAS  Google Scholar 

  • John I, Hackett R, Cooper W, Drake R, Farrel A, Grierson D (1997) Cloning and characterization of tomato leaf senescence-related cDNAs. Plant Mol Biol 33: 641–651

    Article  PubMed  CAS  Google Scholar 

  • Kim D-J, Smith SM (1994) Molecular cloning of cucumber phosphoenolpyruvate carboxykinase and developmental regulation of gene expression. Plant Mol Biol 26: 423–434

    Article  PubMed  CAS  Google Scholar 

  • Kim D-J, Smith SM, Leaver CJ (1997) A cDNA encoding a putative SPF-1 type DNA-binding protein from cucumber. Gene 185: 265–269

    Article  PubMed  CAS  Google Scholar 

  • Kleber-Janke T, Krupinska K (1997) Isolation of cDNA clones for genes showing enhanced expression in barley leaves during dark-induced senescence as well as during senescence under field conditions. Planta 203: 332–340

    Article  PubMed  CAS  Google Scholar 

  • Lee JC, Peter ME (2003) Regulation of apoptosis by ubiq-uitination. Immunol Rev 193: 39–47

    Article  PubMed  CAS  Google Scholar 

  • Lepage T, Gache C (1990) Early expression of a collage-nase-like hatching enzyme gene in the sea urchin embryo. EMBO J 9: 3003–3012

    PubMed  CAS  Google Scholar 

  • Lohman KN, Gan S, John MC, Amasino RM (1994) Molecular analysis of natural senescence inArabidopsis thaliana. Physiol Plant 92: 322–328

    Article  CAS  Google Scholar 

  • Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, Muller-Rober B, Schulz B (2002) Mul-tifunctionality of plant ABC transporters — More than just detoxifiers. Planta 214: 345–355

    Article  PubMed  CAS  Google Scholar 

  • Matsui K, Hijiya K, Tabuchi Y, Kajiwara T (1999) Cucumber cotyledon lipoxygenase during postgerminative growth. Its expression and action on lipid bodies. Plant Physiol 119: 1279–1287

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DP, Nickels R, Mcintosh L (2002) Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J 29: 269–279

    Article  PubMed  CAS  Google Scholar 

  • McGeehan G, Burkhart W, Anderegg R, Becherer JD, Gil-likin JW, Graham J (1992) Sequencing and characterization of the soybean leaf metalloproteinase. Plant Physiol 99: 1179–1183

    Article  PubMed  CAS  Google Scholar 

  • Nam HG (1997) The molecular genetic analysis of leaf senescence. Curr Opin Biotech 8: 200–207

    Article  PubMed  CAS  Google Scholar 

  • Nooden LD, Guiamet JJ, John I (1997) Senescence mechanisms. Physiol Plant 101: 746–753

    Article  CAS  Google Scholar 

  • Page T, Griffiths G, Buchanan-Wollaston V (2001) Molecular and biochemical characterization of postharvest senescence in broccoli. Plant Physiol 125: 718–727

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Oh SA, Kim YH, Woo HR, Nam HG (1998) Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors inArabidopsis. Plant Mol Biol 37: 445–454

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Zeevaart JA (2002) Overexpression of a 9-cis-epoxy-carotenoid dioxygenase gene inNicotiana plumbagini-folia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128: 544–551

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanchez-Fernandez R, Davies TG, Coleman JO, Rea PA (2001) TheArabidopsis thaliana ABC protein superfam-ily a complete inventory. J Biol Chem 276: 30231–30244

    Article  PubMed  CAS  Google Scholar 

  • Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419–448

    Article  CAS  Google Scholar 

  • Smart CM, Hosken SE, Thomas H, Greaves JA, Blair BG, Schuch W (1995) The timing of maize senescence and characterization of senescence-related cDNAs. Physiol Plant 93: 673–682

    Article  CAS  Google Scholar 

  • Thomas H, Stoddart JL (1980) Leaf senescence. Annu Rev Plant Physiol 31: 83–111

    Article  CAS  Google Scholar 

  • Tournaire C, Kushnir S, Bauw G, Inze D, Teyssendier de la Serve B, Renaudin JP (1996) A thiol protease and an anionic peroxidase are induced by lowering cytokinins during callus growth inPetunia. Plant Physiol 111:159–168

    Article  PubMed  CAS  Google Scholar 

  • Yamaryo Y, Kanai D, Awai K, Shimojima M, Masuda T, Shi-mada H, Takamiya K, Ohta H (2003) Light and cytoki-nin play a co-operative role in MGDG synthesis in greening cucumber cotyledons. Plant Cell Physiol 44: 844–855

    Article  PubMed  CAS  Google Scholar 

  • Ye Z, Rodriguez R, Tran A, Hoang H, de los Santos D, Brown S, Vellanoweth RL (2000) The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue inArabidopsis thaliana. Plant Sci 158: 115–127

    Article  PubMed  CAS  Google Scholar 

  • Zolman BK, Silva ID, B Bartel (2001) The Arabidopsispxa1 mutant is defective in an ATP Binding Cassette transporter-like protein required for peroxisomal fatty acid β-oxidation. Plant Physiol 127: 1266–1278

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae -Jae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D.J. A study of cotyledon senescence in cucumber (Cucumis sativus L.) based on expressed sequence tags and gene expression. J. Plant Biol. 47, 244–253 (2004). https://doi.org/10.1007/BF03030515

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030515

Keywords

Navigation