Skip to main content
Log in

Comparison of sintering behavior and mechanical properties between WC−8Co and WC−8Ni hard materials produced by high-frequency induction heating sintering

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The sintering behavior and mechanical properties of WC-Co and WC-Ni hard materials produced by high-frequency induction-heating sintering (HFIHS) were compared using ultra fine WC, WC-Co, and WC-Ni powders. HFIHS allows very quick densification to near theoretical density and prohibits grain growth in nano-structured materials. Highly dense WC, WC-Co, and WC-Ni with a relative density of up to 99.2% could be obtained with simultaneous application of 60 MPa pressure and induced current within 2 min without significant change in grain size. The hardness and fracture toughness of the dense WC, WC-Co, and WC-Ni composites produced by HFIHS were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Mohan and P. R. Strutt,Nanostruct. Mater 7, 2021 (1996).

    Google Scholar 

  2. B. K. Kim, G. H. Ha, and D. W. Lee,J. Mater. Process. Tech. 63, 317 (1997).

    Article  Google Scholar 

  3. S. Imasato, K. Tokumoto, T. Kitada, and S. Sakaguchi,Int. J. Refract. Met. Hard Mater. 13, 305 (1995).

    Article  CAS  Google Scholar 

  4. E. A. Almond and B. Roebuck,Mat. Sci. Eng. A 105, 237 (1988).

    Article  Google Scholar 

  5. G. Gille, J. Bredthauer, B. Gries, B. Mende, and W. Heinrich,Int. J. Refract. Met. Hard Mater. 18, 87 (2000).

    Article  CAS  Google Scholar 

  6. P. Goeuriot and F. Thevenot,Ceram. Int. 13, 99 (1987).

    Article  CAS  Google Scholar 

  7. F. L. Zhang, C. Y. Wang, and M. Zhu,Scripta materialia 49, 1123 (2003).

    Article  CAS  Google Scholar 

  8. S. G. Shin,Metal and Materials 6, 195 (2000).

    Article  CAS  Google Scholar 

  9. M. J. Ledoux, C. H. Pham, J. Guille, and H. Dunlop,J. Catalysis 134, 383 (1992).

    Article  CAS  Google Scholar 

  10. W. Acchar, U. U. Gomez, W. A. Kaysser, and J. Goring,Mater. Character. 43, 27 (1999).

    Article  CAS  Google Scholar 

  11. T. Ungar and A. Borbely,Nanostruct. Mater. 11, 103 (1999).

    Article  CAS  Google Scholar 

  12. A. Hirata, H. Zheng, and M. Yoshikawa,Diam. Relat. Mater. 7, 1669 (1998).

    Article  CAS  Google Scholar 

  13. T. S. Srivatsan, R. Woods, M. Petraroli, and T. S. Sudarshan,Powder Tech. 122, 54 (2002).

    Article  CAS  Google Scholar 

  14. K. Yamada,J. Alloy. Compd. 305, 253 2000).

    Article  CAS  Google Scholar 

  15. M. S. El-Eskandarany,J. Alloy. Compd. 305, 225 (2000).

    Article  CAS  Google Scholar 

  16. L. Fu, L. H. Cao and Y. S. Fan,Scripta materialia 44, 1067 (2001).

    Google Scholar 

  17. K. Niihara and A. Nkahira,Advanced structural Inorganic Composite, Elsevier Scientific Publishing Co., Trieste, Italy (1990).

    Google Scholar 

  18. S. Berger, R. Porat, and R. Rosen,Prog. Mater. 42, 311 (1997).

    Article  Google Scholar 

  19. Z. Fang and J. W. Eason,Int. J. Refract. Met. Hard Mater. 13, 297 (1995).

    Article  CAS  Google Scholar 

  20. M. Sommer, W-D. Schubert, E. Zobetz, and P. Warbichler,Int. J. Refract. Met. Hard Mater. 20, 41 (2002).

    Article  CAS  Google Scholar 

  21. S. I. Cha, S. H. Hong, and B. K. Kim,Mater. Sci. Eng. A 351, 31 (2003).

    Article  CAS  Google Scholar 

  22. S. I. Cha, S. H. Hong, G. H. Ha, and B. K. Kim,Scripta mater. 44, 1353 (2001).

    Article  Google Scholar 

  23. H. C. Kim, I. J. Shon, and Z. A. Munir,J. Mater. Sci. 40, 2849 (2005).

    Article  ADS  CAS  Google Scholar 

  24. H. C. Kim, D. Y. Oh, and I. J. Shon,Int. J. Refract. Met. Hard Mater. 22, 197 (2004).

    Article  CAS  Google Scholar 

  25. K. Jia, T. E. Fischer, and G. Gallois,Nanostruct. Mater. 10, 875 (1998).

    Article  CAS  Google Scholar 

  26. J. H. Han and D. Y. Kim,Acta mater. 46, 2021 (1998),

    Article  CAS  Google Scholar 

  27. G. S. Upadhyaya,Mater. Design 22, 483 (2001).

    Article  CAS  Google Scholar 

  28. A. V. Shatov, S. A. Firstov, and I. V. Shatova,Mater. Sci. Eng. A 242, 7 (1998).

    Article  Google Scholar 

  29. J. Fleischer, T. Masuzawa, J. Schmidt, and M. Knoll,J. Mater. Process. Tech. 149, 246 (2004).

    Article  CAS  Google Scholar 

  30. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall,J. Am. Ceram. Soc. 64, 533 (1981).

    Article  CAS  Google Scholar 

  31. L. Sl. Sigl, P. A. Mataga, B. J. Dalgleish, R. M. McMeeking, and A. G. Evans,Acta metall. 36, 945 (1988).

    Article  CAS  Google Scholar 

  32. H. Engqvist, G. A. Botton, N. Axen, and S. Hogmark,J. Am. Ceram. Soc. 83, 2491 (2000).

    Article  CAS  Google Scholar 

  33. C. D. Park, H. C. Kim, I. J. Shon, and Z. A. Munir,J. Am. Ceram. Soc. 85, 2670 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jin Shon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HC., Shon, IJ., Yoon, JK. et al. Comparison of sintering behavior and mechanical properties between WC−8Co and WC−8Ni hard materials produced by high-frequency induction heating sintering. Met. Mater. Int. 12, 141–146 (2006). https://doi.org/10.1007/BF03027470

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027470

Keywords

Navigation