Skip to main content
Log in

Effect of size and shape of tungsten particles on penetration performance in tungsten heavy alloys

  • Published:
Metals and Materials Aims and scope Submit manuscript

Abstract

The effects of the size and shape of tungsten particles on dynamic torsional properties in tungsten heavy alloys were investigated. Dynamic torsional tests were conducted on seven tungsten alloy specimens, four of which were fabricated by repeated sintering, using a torsional Kolsky bar, and then the test results were comparedvia microstructure, mechanical properties, adiabatic shear banding, and deformation and fracture mode. The size of tungsten particles and their hardness were increased with the increasing of the sintering temperature and time, thereby deteriorating the fracture toughness. The dynamic torsional test results indicated that a cleavage fracture occurred predominantly with little shear deformation in the specimens whose tungsten particles were coarse and irregularly shaped whereas shear deformation was concentrated into the center of the gage section in the conventionally fabricated specimens. The deformation and fracture behavior of the specimens having coarse tungsten particles correlated well with the observation of thein situ fracture test results,i.e., cleavage crack initiation and propagation. These findings suggested that there would be an appropriate tungsten particle size condition in the penetration performance since the cleavage fracture mode would be beneficial for the self-sharpening of tungsten heavy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Bruchey, E. J. Horwath and P. W. Kingman, inTungsten and Tungsten Heavy Alloys-Recent Advances (eds., A. Crowson and E.S. Chen), p. 121, TMS, Warrendale, PA (1991).

    Google Scholar 

  2. A. Bose, H. Couque and J. Lankford, Jr.,Int. J. Powder Metall. 28, 383 (1992).

    CAS  Google Scholar 

  3. S. P. Andrew, R. D. Caligiuru and L.E. Eiselstein, inTungsten and Tungsten Alloys-Recent Advances (eds., A. Crowson and E.S. Chen), p. 141, TMS, Warrendale, PA (1991).

    Google Scholar 

  4. K. T. Ramesh and R. S. Coates,Metall. Trans. 23A, 2625 (1992).

    CAS  Google Scholar 

  5. R. L. Woodward, N. J. Baldwin, I. Burch and B. J. Baxter,Metall. Trans. 16A, 2031 (1985).

    CAS  Google Scholar 

  6. R. H. Tham and H. Nähme, inTungsten and Tungsten Alloys-1992 (eds., A. Bose and R.J. Dowding), p. 335, MPIF, Princeton, NJ (1992).

    Google Scholar 

  7. M. Zhou, R. J. Clifton and A. Needleman, inTungsten and Tungsten Alloys-1992 (eds., A. Bose and R. J. Dowding), p. 343, MPIF, Princeton, NJ (1992).

    Google Scholar 

  8. S. Yadav and K. T. Ramesh, inTungsten and Refractory Metals-1994 (eds., A. Bose and R. J. Dowding), p. 411, MPIF, Princeton, NJ (1994).

    Google Scholar 

  9. W. Leonard, L. S. Magness, R. J. Dowding, J. Trogolo, M. Chung and D. Kapoor, inTungsten and Refractory Metals 3-1995 (eds., A. Bose and R.J. Dowding), p. 103, MPIF, Princeton, NJ (1995).

    Google Scholar 

  10. L. S. Magness, inTungsten and Refractory Metals 3-1995 (eds., A. Bose and R. J. Dowding), p. 133, MPIF, Princeton, NJ (1995).

    Google Scholar 

  11. J. Lankford, A. Bose and H. Couque, inHigh Strain Rate Behavior of Refractory Metals and Alloys (eds., R. Asfahani, E. Chen, and A. Crowson), p. 267, TMS, Warrendale, PA (1992).

    Google Scholar 

  12. W. E. Gurwell, inTungsten and Refractory Metals-1994 (eds., A. Bose and R. J. Dowding), p. 65, MPIF, Princeton, NJ (1994).

    Google Scholar 

  13. D. Chaiat, E. Y. Gutmanas and I. Gotman, inTungsten and Refractory Metals-1994 (eds., A. Bose and R.J. Dowding), p. 57, MPIF, Princeton, NJ (1994).

    Google Scholar 

  14. H.-S. Song, J.-W. Noh, W.-H. Baek, S.-J. L. Kang and B.-S. Chun,Metall. Trans. 28A, 485 (1997).

    CAS  Google Scholar 

  15. K. A. Hartley, J. Duffy and R. H. Hawley, inMetals Handbook, 9th ed., vol. 8, p. 218, ASM, Metals Park, OH (1985).

    Google Scholar 

  16. K. Cho, Y. C. Chi and J. Duffy,Metall. Trans. 21A, 1161 (1990).

    CAS  Google Scholar 

  17. A. Molinariand R. J. Clifton,J. Appl. Mech. ASME,54, 806 (1987).

    Article  MATH  Google Scholar 

  18. L. S. Costin, E. E. Crisman, R. H. Hawley and J. Duffy, in2nd Conf. on Mechanical Properties of Materials at High Rates of Strain (ed., J. Harding), p. 90, The Institute of Physics, London (1979).

    Google Scholar 

  19. InMetals Handbook, 9th ed., vol. 9, p. 440, ASM, Metals Park, OH (1985).

  20. S. Lee, K.-S. Sohn, I. Park and K. Cho,Metall. Mater. 1, 37 (1995).

    CAS  MATH  Google Scholar 

  21. InASTM Standard Method of Test for Plane-Strain Fracture Toughness of Metallic Materials, ASTM E399-74, 1974 Annual Book of ASTM Standard, p. 432, ASTM, Philadelphia, PA (1974).

  22. M. Mitkov and W.A. Kaysser,Science of Sintering (eds., D. P. Uskokovi, H. Palmour and R. M. Spriggs), p. 243, Plenum Press, NY (1984).

    Google Scholar 

  23. A. S. Tetelman,Fracture of Solids (eds., D. C. Druckers and J. J. Gilman), p. 631, John Wiley & Sons, NY (1963).

    Google Scholar 

  24. R. Ayres and D. F. Stein,Acta metall. 19, 789 (1971).

    Article  CAS  Google Scholar 

  25. A. Bose, H. Couque and J. Lankford, Jr., inTungsten and Tungsten Alloys-1992 (eds., A. Bose and R.J. Dowding), p. 291, MPIF, Princeton, NJ (1992).

    Google Scholar 

  26. T. Weerasooriya, P. Moy and R. J. Dowding, inTungsten and Refractory Metals-1994 (eds., A. Bose and R.J. Dowding), p. 401, MPIF, Princeton, NJ (1994).

    Google Scholar 

  27. K.-S. Churn, J.-W. Noh, H.-S. Song, E.-P. Kim, S. Lee and W.-H. Baek, inTungsten and Tungsten Alloys-1992 (eds., A. Bose and R.J. Dowding), p. 397, MPIF, Princeton, NJ (1992).

    Google Scholar 

  28. J.-W. Noh, E.-P. Kim, H.-S. Song, W.-H. Baek, K.-S. Churn and S-J.L. Kang,Metall. Trans. 24A, 2411 (1993).

    CAS  Google Scholar 

  29. A. H. Cottrell,Trans. Am. Inst. Min. Eng. 212, 192 (1958).

    CAS  Google Scholar 

  30. A. Marchand and J. Duffy,J. Mech. Phys. Solids 36, 261 (1988).

    Google Scholar 

  31. D.-K. Kim, S. Lee, and H.-S. Song,Metall. Trans. 29A, 1057 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DK., Lee, S. & Song, HS. Effect of size and shape of tungsten particles on penetration performance in tungsten heavy alloys. Metals and Materials 5, 211–223 (1999). https://doi.org/10.1007/BF03026055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026055

Key words

Navigation