Skip to main content
Log in

An overview of remote sensing of chlorophyll fluorescence

  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyl l - a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, M.R., P.J. Richerson, and T.M. Powell. 1982. In situ response of phytoplankton fluorescence to rapid variations in light.Limnol. Oceanogr.,27, 218–225.

    Google Scholar 

  • Abbott, M.R. and R.M. Letelier. 1999. MODIS ATBD No.22 Chlorophyll Fluorescence.

  • Babin, M., A. Morel, and B. Gentili. 1996. Remote sensing of sea surface Sun-induced chlorophyll fluorescence: Consequences of natural variation in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence.Int. J. Remote Sens.,17, 2417–2448.

    Article  Google Scholar 

  • Campbell, D., H. Vaughan, A.K. Clarke, P. Gustafsson, and G. Öquist. 1998. Chlorophyll fluorescence analysis of cyanobacte r ia l photosynthesis and acclimation.Microbiol. Mol. Biol. Rev.,62, 667–683.

    Google Scholar 

  • Falkowski, P. and D.A. Kiefer. 1985. Chlorophyll a fluorescence in phytoplankton: Relationship to photosynthesis and biomass.J. Plankton Res.,7, 715–731.

    Article  Google Scholar 

  • Fell, F., J. Fischer, M. Schaale, and T. Schröder. 2003. Retrieval of chlorophyll concentration from MERIS measurements in the spectral range of the sun-induced chlorophyll fluorescence.Ocean Remote Sens. Appl.,4892, 116–123.

    Google Scholar 

  • Fischer, J. and U. Kronfeld. 1990. Sun-stimulated chlorophyll fluorescence, 1. Influence of oceanic properties.Int. J. Remote Sens.,11, 2125–2147.

    Article  Google Scholar 

  • Fischer, J. and P. Schlüssel. 1990. Sun-stimulated chlorophyll fluorescence, 2. Impact of atmospheric properties.Int. J. Remote Sens.,11, 2149–2162.

    Article  Google Scholar 

  • Gitelson, A.A. 1992. The peak near 700nm on reflectance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration.Int. J. Remote Sens.,13, 3367- 3373.

    Article  Google Scholar 

  • Gitelson, A.A. 1993. Algorithms for remote sensing of phytopl an k t o n pigments in inland waters.Adv. Space Res.,13, 197–201.

    Article  Google Scholar 

  • Gitelson, A.A. and K.Ya. Kondrat’et. 1991. On the mechanism of formation of maximum in the reflectance spectra near 700 nm and its application for remote monitoring of water quality.Trans. Doklady USSR Acad. Sci.,306, 1–4.

    Google Scholar 

  • Gitelson, A.A., Y.Z. Yacobi, A. Karnieli, and N. Kress. 1996. Reflectance spectra of polluted marine waters in Haifa Bay, Southeastern Mediterranean: Features and application for remote estimation of chlorophyll concentration.Israel J. Earth Sci.,45, 127–136.

    Google Scholar 

  • Gitelson, A.A., Y.Z. Yacobi, D.C. Rundquist, R. Stark, L. Han, and D. Etzion. 2000. NWQMC CONFERENCE 2000, Monitoring for the Millennium.

  • Gordon, H.R. 1979. Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence.Appl. Optics,21, 2489–2492.

    Google Scholar 

  • Gordon, H.R. and W.R. McCluney. 1975. Estimation of the depth of Sunlight penetration in the sea for remote sensing.Appl. Optics,14, 417.

    Article  Google Scholar 

  • Gower, J.F.R. 1980. Observation of in situ fluorescence of chlorophyll-a in Saanich Inlet.Boundary-Layer Meteorol.,18, 235–245.

    Article  Google Scholar 

  • Gower, J.F.R. and G.A. Borstad. 1987. On the use of solarstimulated fluorescence signal from chlorophyll a for airborne and satellite mapping of phytoplankton.Adv. Space Res.,7, 101–106.

    Article  Google Scholar 

  • Gower, J.F.R. and G.A. Borstad. 1990. Mapping of phytopla nk to n b y solar-stimulated fluorescence using an imaging spectrometer.Int. J. Remote Sens.,11, 313–320.

    Article  Google Scholar 

  • Gower, J.F.R., L. Brown, and G. A. Borstad. 2004. Observations of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor.Can. J. Remote Sens.,30, 17–25.

    Google Scholar 

  • Gower, J.F.R., R. Doerffer, and G.A. Borstad. 1999. Interpretation of the 685nm peak in water-leaving radiance in terms of fluorescence, absorption and scattering, and its observation by MERIS.Int. J. Remote Sens.,20, 1771–1786.

    Article  Google Scholar 

  • Gower, J.F.R. and S. King. 2003. Validation of Chlorophyll Fluorescence Derived From MERIS On The West Coast of Canada. Proc. MERIS User Workshop, Frascati, Italy, 10–13 November 2003.

    Google Scholar 

  • Gower, J.F.R., S. King, W. Yan, G. Borstad, and L. Brown. 2003. Use of The 709 nm Band of MERIS to Detect Intense Plankton Blooms and Other Conditions In Coastal Waters. Proc. MERIS User WorkshopFrascati, Italy, 10–13 November 2003.

    Google Scholar 

  • Hoge, F.E., P.E. Lyon, R.N. Swift, J.K. Yungel, M.R. Abbott, R.M. Letelier, and W.E. Esaias. 2003. Validation of TerraMODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne lidar results.Appl. Optics,42, 2767–2771.

    Article  Google Scholar 

  • Hu, C.M., F.E. Muller-Karger, C. Taylor, K.L. Carder, C. Kelble, E. Johns, and C. A. Heil. 2005. Red tide detection and tracing using MODIS fluorescence data A regional example in SW Florida coastal waters.Remote Sens. Environ., 97, 311–321.

    Article  Google Scholar 

  • Huot, Y., C.A. Brown, and J.J. Cullen. 2005. New algorithms for MODIS sun-induced chlorophyll fluorescence and a compari s on with present data products.Limnol. Oceanogr.,3, 108–130.

    Google Scholar 

  • IOCCG. 1999. Status and plans for Satellite Ocean-Colour Missio ns: Considerations for complementary missions. IOCCG Report Number 2, 18–20.

    Google Scholar 

  • Kiefer, D.A. 1973. Chlorophyll a fluorescence in maine centric diatoms: Response of chloroplasts to light and nutrients.Mar. Biol.,22, 263–269.

    Article  Google Scholar 

  • Kishino, M., S. Sugihara, and N. Okami. 1986. Theoretical analysis of the in-situ fluorescence of chlorophyll-a on the underwater spectral irradiance.Bull. Soc. Franco-Japonaise ďOcéangr.,24, 130–138.

    Google Scholar 

  • Letelier, R.M. and M.R. Abbott. 1996. An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS).Remote Sens. Environ.,58, 215–223.

    Article  Google Scholar 

  • Loftus, M.E. and H.H. Seliger. 1975. Some limitations of the in vivo fluorescence technique.Cheasepeake Bay Sci.,16, 79–92.

    Article  Google Scholar 

  • Maritorena, S., A. Morel, and B. Gentili. 2000. Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat.Appl. Optics,39, 6725–6737.

    Article  Google Scholar 

  • Mittenzwey, K.H., A.A. Gitelson, and K.Y. Kondratiev. 1992. Determination of chlorophyll a of inland waters on the basis of spectral reflectance.Limnol. Oceanogr.,37, 147–149.

    Google Scholar 

  • Mittenzwey, K.H., S. Breitwieser, J. Penig, A.A. Gitelson, G. Dubovitzkii, G. Garabusov, S. Ullrich, V. Vobach, and A. Müller. 1991. Fluorescence and reflectance for the in-situ determination of some quality parameters of surface waters.Acta hydrochim. Hydiobiol.,19, 3–15.

    Google Scholar 

  • Morel, A. and L. Prieur. 1977. Analysis of variations in ocean color.Limnol. Oceanogr.,22, 709–722.

    Article  Google Scholar 

  • Neville, R.A. and J.F.R. Gower. 1977. Passive remote sensing of phytoplankton via chlorophyll fluorescence.J. Geophys. Res.,82, 3487–3493.

    Article  Google Scholar 

  • Pan, D.L., J.F.R. Gower, and S.R. Lin. 1989. A study of band selection for fluorescence remote sensing of ocean chloroph yl l -a.Oceanol. Limnol. Sin.,20, 564–570.

    Google Scholar 

  • Tyler, J.E. and R.C. Smith. 1970. Measurements of Spectral Irradiance under Water. Gordon and Breach, New York.

    Google Scholar 

  • Vasikov, A.P. and O.V. Kopelevich. 1982. The reasons of maximum at about 700 nm on radiance spectra of the sea.Oceanography,22, 945–950.

    Google Scholar 

  • Vos, W.L., M. Donze, and H. Bueteveld. 1986. On the reflectance spectrum of algae in water: The nature of the peak at 700nm and its shift with varying concentration. Communications on Sanitary Engineering and Water Management, Delft, The Netherlands. Technical Report, 86–92.

    Google Scholar 

  • Yacobi, Y.Z., A.A. Gitelson, and M. Mayo. 1995. Remote sensing of chlorophyll in Lake Kinneret using high spectral resolution radiometer and Landsat TM: Spectral features of reflectance and algorithm development.J. Plankton Res.,17, 2155–2173.

    Article  Google Scholar 

  • Zhao, D.Z., F. Du, L. Zhao, H. Guo, and F.S. Zhang. 2004a. On the Reflectance Spectrum of Algae in Water: Comparison of chlorophyll fluorescence algorithms for three remote sensing red tide sensors.High Tech. Lett.,14, 93–97.

    Google Scholar 

  • Zhao, D.Z., F.S. Zhang, F. Du, H. Guo, and L. Zhao. 2004b. Fluorescence Peak near 700nm on the Reflectance Spectrum of Algae in Water: The relationship of fluorescence line height with chlorophyll a concentration.China High Tech. Lett.,5, 68–72.

    Google Scholar 

  • Zhao, D.Z., F.S. Zhang, F. Du, H. Guo, and L. Zhao. 2005a. The optimized spectral bands ratio for the relation of sun-induced chlorophyll fluorescence height with high chlorophyll a concentration of algal bloom waters. Acta Oceanol. Sin., 6.

  • Zhao, D.Z., F.S. Zhang, F. Du, L. Zhao, and H. Guo. 2005b. Interpretation of sun-induced fluorescence peak of chlorophyll-a on reflectance spectrum of algal waters.J. China Remote Sens.,9, 265–270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Gang Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, XG., Zhao, DZ., Liu, YG. et al. An overview of remote sensing of chlorophyll fluorescence. Ocean Sci. J. 42, 49–59 (2007). https://doi.org/10.1007/BF03020910

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03020910

Key words

Navigation