Skip to main content
Log in

Périodes critiques de plasticité des cartes sensorielles corticales

Plasticity of cortical sensory maps: Molecular determinants of critical periods

  • Neurosciences
  • Published:
PSN

Résumé

Les cartes sensorielles consistent dans des représentations ordonnées des récepteurs périphériques sur le cortex cérébral. Très variables selon les espèces, elles sont plastiques et peuvent être modifiées par des privations sensorielles lésionnelles ou fonctionnelles. Pendant certaines phases critiques du développement, les afférences sensorielles ont un rôle proéminent et provoquent certaines modifications irréversibles de l’organisation de ces cartes. Récemment, cette étude est passée de l’ère d’une description phénoménologique à un début de compréhension des mécanismes moléculaires. Des études génétiques chez la souris ont permis en particulier de démontrer le rôle important des neurotrophines ainsi que des neuromédiateurs comme le glutamate, le GABA et la 5-HT dans la plasticité développementale des cartes sensorielles. Des propriétés de neurotransmission, de réceptivité aux facteurs trophiques et de mobilité des neurones pourraient expliquer la plus grande plasticité des cartes pendant le développement.

Abstract

Cortical sensory maps are topographically ordered projections of the peripheral sensory receptors. The size of the representation of different body parts is determined by the number of sensory receptors in the periphery, with substantial variations between species, even amongst closely related mammals. Maps can be modified during critical periods of development, as has been most thoroughly characterised in the visual and the somatosensory system. Recently the field has moved from a phenomenological to a molecular era: studies using mouse genetics demonstrate the importance of molecules such as neurotrophins and of neurotransmitters such as glutamate, GABA and serotonin for the developmental plasticity of these maps. Serotonin and neurotrophins acts on receptors that are transiently expressed on the thalamocortical axons. The radical changes in gene expression patterns that occurr during this period in both the thalamus and the cerebral cortex could underlie the time course of this very particular form of plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Références

  1. Berardi N., Pizzorusso T., Maffei L. 2000. Critical priods during sensory development.Curr. Opin. Neurobiol. 10, 138–145.

    Article  PubMed  CAS  Google Scholar 

  2. Bourgeois J.P., Rakic P. 1996. Synaptogenesis in the occipital cortex of macaque monkey devoid of retinal input from early embryonic stages.Eur. J. Neurosci. 8, 942–950.

    Article  PubMed  CAS  Google Scholar 

  3. Buonomano D.V., Merzenich M.M. 1998. Cortical plasticity: from synapses to maps.Annu. Rev. Neurosci. 21, 149–186.

    Article  PubMed  CAS  Google Scholar 

  4. Cases O., Vitalis T., Seif I., De Maeyer E., Sotelo C., Gaspar P. 1996. Lack of barrels in the somatosensory cortex of monoamine oxidase A- deficient mice: role of a serotonin excess during the critical period.Neuron 16, 297–307.

    Article  PubMed  CAS  Google Scholar 

  5. Catania K.C. 2000. Epidermal sensory organs of moles, shrew moles, and desmans: a study of the family talpidae with comments on the function and evolution of Eimer’s organ.Brain Behav. Evol. 56, 146–174.

    Article  PubMed  CAS  Google Scholar 

  6. Constantine-Paton M., Cline H.T. LTP and activity-dependent synaptogenesis: the more alike they are, the more different they become.Curr. Opin. Neurobiol. 8, 139–148.

  7. Cooper H.M., Herbin M., Nevo E. 1993. Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi.J. Comp Neurol. 328, 313–350.

    Article  PubMed  CAS  Google Scholar 

  8. Crowley J.C., Katz L.C. 2000. Early development of ocular dominance columns.Science 290, 1321–1324.

    Article  PubMed  CAS  Google Scholar 

  9. Fagiolini M., Hensch T.K. 2000. Inhibitory threshold for critical-period activation in primary visual cortex.Nature 404, 183–186.

    Article  PubMed  CAS  Google Scholar 

  10. Fox K., Glazewski S., Schulze S. 2000. Plasticity and stability of somatosensory maps in thalamus and cortex.Curr. Opin. Neurobiol. 10, 494–497.

    Article  PubMed  CAS  Google Scholar 

  11. Frost D.O., Metin C. 1985. Induction of functional retinal projections to the somatosensory system.Nature 317, 162–164.

    Article  PubMed  CAS  Google Scholar 

  12. Frost D.O., Boire D., Gingras G., Ptito M. 2000. Surgically created neural pathways mediate visual pattern discrimination.Proc. Natl. Acad. Sci. U. S. A. 97, 11068–11073.

    Article  PubMed  CAS  Google Scholar 

  13. Fukuchi-Shimogori T., Grove E.A. 2001. Neocortex patterning by the secreted signalin molecule FGF8.Science 294, 1071–1074.

    Article  PubMed  CAS  Google Scholar 

  14. Hanover J.L., Huang Z.J., Tonegawa S., Stryker M.P. 1999. Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex.J. Neurosci. 19, RC40.

    Google Scholar 

  15. Huang Z.J.et al. 1999. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex.Cell 98, 739–755.

    Article  PubMed  CAS  Google Scholar 

  16. Iwasato T.et al. 2000. Cortex-restricted disruption of NMDARI impairs neuronal patterns in the barrel cortex.Nature 406, 726–731.

    Article  PubMed  CAS  Google Scholar 

  17. Kaas J.H. 1995. The evolution of isocortex.Brain Behav. Evol. 46, 187–196.

    Article  PubMed  CAS  Google Scholar 

  18. Krubitzer L. 1995. The organization of neocortex in mammals: are species differences really so different?Trends Neurosci. 18, 408–417.

    Article  PubMed  CAS  Google Scholar 

  19. Krubitzer L., Huffman K.J. 2000. Arealization of the neocortex in mammals: genetic and epigenetic contributions to the phenotype.Brain Behav. Evol. 55, 322–335.

    Article  PubMed  CAS  Google Scholar 

  20. Kujala T., Alho K., Naatanen R. 2000. Cross-modal reorganization of human cortical functions.Trends Neurosci. 23, 115–120.

    Article  PubMed  CAS  Google Scholar 

  21. Laurent A., Goaillard J.M., Cases O., Lebrand C., Gaspar P., Ropert N. 2002. Activity dependent presynapptic role of the serotonin 1B receptors on the thalamocortical transmission in the somatosensory pathway of the neonatal mice.J. Neurosci. 22, 886–900.

    PubMed  CAS  Google Scholar 

  22. Lebrand C.et al. 1996. Transient uptake and storage of serotonin in developing thalamic neurons.Neuron 17, 823–835.

    Article  PubMed  CAS  Google Scholar 

  23. Le Grand R., Mondloch C.J., Maurer D., Brent H.P. 2001. Neuroperception Early visual experience and face processing.Nature 410, 890.

    Article  PubMed  Google Scholar 

  24. Lendvai B., Stern E.A., Chen B., Svoboda K. 2000. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo [see comments].Nature 404, 876–881.

    Article  PubMed  CAS  Google Scholar 

  25. Marks G.A., Shaffery J.P., Oksenberg A., Speciale S.G., Roffwarg H.P. 1995. A functional role for REM sleep ion brain maturation.Behav. Brain Res. 69, 1–11.

    Article  PubMed  CAS  Google Scholar 

  26. Marty S., Berzaghi M., Berninger B. 1997. Neurotrophins and activity-dependent plasticity of cortical interneurons.Trends Neurosci. 20, 198–202.

    Article  PubMed  CAS  Google Scholar 

  27. Marty S., Wehrle R., Sotelo C. 2000. Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus.J. Neurosci. 20, 8087–8095.

    PubMed  CAS  Google Scholar 

  28. McAllister A.K., Katz L.C., Lo D.C. 1999. Neurotrophins and synaptic plasticity.Annu. Rev. Neurosci. 22, 295–318.

    Article  PubMed  CAS  Google Scholar 

  29. Penfield W., Boldrey E. 1937. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation.Brain 60: 389–443.

    Article  Google Scholar 

  30. Rakic P., Bourgeois J.P., Eckenhoff M.F., Zecevic N., Goldman-Rakic P.S. 1986. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex.Science 232, 232–235.

    Article  PubMed  CAS  Google Scholar 

  31. Rebsam A., Seif I., Gaspar P. 2002. Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosoensory cortex.J. Neurosci. 22, 8541–42.

    PubMed  CAS  Google Scholar 

  32. Salichon N.et al. 2001. Excessive Activation of Serotonin 5-HT. 1B Receptors Disrupts the Formation of Sensory Maps in Monoamine Oxidase A and 5-HT Transporter Knock-Out Mice.J. Neurosci. 21, 884–896.

    PubMed  CAS  Google Scholar 

  33. Schlaggar B.L., Fox K., O’Leary D.D. 1993. Postsynaptic control of plasticity in developing somatosensory cortex.Nature 364, 623–626.

    Article  PubMed  CAS  Google Scholar 

  34. Simons D.J., Land P.W. 1987. Early experience of tactile stimulation influences organization of somatic sensory cortex.Nature 326, 694–697.

    Article  PubMed  CAS  Google Scholar 

  35. Sur M., Leamey C.A. 2001. Development and plasticity of cortical areas and networks.Nat. Rev. Neurosci. 2, 251–262.

    Article  PubMed  CAS  Google Scholar 

  36. Upton A.L.et al. 1999. Excess of serotonin 5-HT. alters the segregation of ispilateral and contralateral retinal projections in monoamine oxidase A knock-out mice: possible role of 5-HT uptake in retinal ganglion cells during development.J. Neurosci. 19, 7007–7024.

    PubMed  CAS  Google Scholar 

  37. Van der Loos H., Woolsey T.A. 1973. Somatosensory cortex: structural alterations following early injury to sense organs.Science 179, 395–398.

    Article  PubMed  Google Scholar 

  38. Welker E., Van der Loos H. 1986. Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: a comparative study in six strains of mice bred for different patterns of mystacial vibrissae.J. Neurosci. 6, 3355–3373.

    PubMed  CAS  Google Scholar 

  39. Wiesel T.N. Hubel D.H. 1965. Extent of recovery from the effects of visual deprivation in kittens.J. Neurophysiol. 28, 1060–1072.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Gaspar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaspar, P. Périodes critiques de plasticité des cartes sensorielles corticales. Psychiatr Sci Hum Neurosci 1, 22–30 (2003). https://doi.org/10.1007/BF03005190

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03005190

Mots Clés

Keywords