Résumé
Les cartes sensorielles consistent dans des représentations ordonnées des récepteurs périphériques sur le cortex cérébral. Très variables selon les espèces, elles sont plastiques et peuvent être modifiées par des privations sensorielles lésionnelles ou fonctionnelles. Pendant certaines phases critiques du développement, les afférences sensorielles ont un rôle proéminent et provoquent certaines modifications irréversibles de l’organisation de ces cartes. Récemment, cette étude est passée de l’ère d’une description phénoménologique à un début de compréhension des mécanismes moléculaires. Des études génétiques chez la souris ont permis en particulier de démontrer le rôle important des neurotrophines ainsi que des neuromédiateurs comme le glutamate, le GABA et la 5-HT dans la plasticité développementale des cartes sensorielles. Des propriétés de neurotransmission, de réceptivité aux facteurs trophiques et de mobilité des neurones pourraient expliquer la plus grande plasticité des cartes pendant le développement.
Abstract
Cortical sensory maps are topographically ordered projections of the peripheral sensory receptors. The size of the representation of different body parts is determined by the number of sensory receptors in the periphery, with substantial variations between species, even amongst closely related mammals. Maps can be modified during critical periods of development, as has been most thoroughly characterised in the visual and the somatosensory system. Recently the field has moved from a phenomenological to a molecular era: studies using mouse genetics demonstrate the importance of molecules such as neurotrophins and of neurotransmitters such as glutamate, GABA and serotonin for the developmental plasticity of these maps. Serotonin and neurotrophins acts on receptors that are transiently expressed on the thalamocortical axons. The radical changes in gene expression patterns that occurr during this period in both the thalamus and the cerebral cortex could underlie the time course of this very particular form of plasticity.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Références
Berardi N., Pizzorusso T., Maffei L. 2000. Critical priods during sensory development.Curr. Opin. Neurobiol. 10, 138–145.
Bourgeois J.P., Rakic P. 1996. Synaptogenesis in the occipital cortex of macaque monkey devoid of retinal input from early embryonic stages.Eur. J. Neurosci. 8, 942–950.
Buonomano D.V., Merzenich M.M. 1998. Cortical plasticity: from synapses to maps.Annu. Rev. Neurosci. 21, 149–186.
Cases O., Vitalis T., Seif I., De Maeyer E., Sotelo C., Gaspar P. 1996. Lack of barrels in the somatosensory cortex of monoamine oxidase A- deficient mice: role of a serotonin excess during the critical period.Neuron 16, 297–307.
Catania K.C. 2000. Epidermal sensory organs of moles, shrew moles, and desmans: a study of the family talpidae with comments on the function and evolution of Eimer’s organ.Brain Behav. Evol. 56, 146–174.
Constantine-Paton M., Cline H.T. LTP and activity-dependent synaptogenesis: the more alike they are, the more different they become.Curr. Opin. Neurobiol. 8, 139–148.
Cooper H.M., Herbin M., Nevo E. 1993. Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi.J. Comp Neurol. 328, 313–350.
Crowley J.C., Katz L.C. 2000. Early development of ocular dominance columns.Science 290, 1321–1324.
Fagiolini M., Hensch T.K. 2000. Inhibitory threshold for critical-period activation in primary visual cortex.Nature 404, 183–186.
Fox K., Glazewski S., Schulze S. 2000. Plasticity and stability of somatosensory maps in thalamus and cortex.Curr. Opin. Neurobiol. 10, 494–497.
Frost D.O., Metin C. 1985. Induction of functional retinal projections to the somatosensory system.Nature 317, 162–164.
Frost D.O., Boire D., Gingras G., Ptito M. 2000. Surgically created neural pathways mediate visual pattern discrimination.Proc. Natl. Acad. Sci. U. S. A. 97, 11068–11073.
Fukuchi-Shimogori T., Grove E.A. 2001. Neocortex patterning by the secreted signalin molecule FGF8.Science 294, 1071–1074.
Hanover J.L., Huang Z.J., Tonegawa S., Stryker M.P. 1999. Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex.J. Neurosci. 19, RC40.
Huang Z.J.et al. 1999. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex.Cell 98, 739–755.
Iwasato T.et al. 2000. Cortex-restricted disruption of NMDARI impairs neuronal patterns in the barrel cortex.Nature 406, 726–731.
Kaas J.H. 1995. The evolution of isocortex.Brain Behav. Evol. 46, 187–196.
Krubitzer L. 1995. The organization of neocortex in mammals: are species differences really so different?Trends Neurosci. 18, 408–417.
Krubitzer L., Huffman K.J. 2000. Arealization of the neocortex in mammals: genetic and epigenetic contributions to the phenotype.Brain Behav. Evol. 55, 322–335.
Kujala T., Alho K., Naatanen R. 2000. Cross-modal reorganization of human cortical functions.Trends Neurosci. 23, 115–120.
Laurent A., Goaillard J.M., Cases O., Lebrand C., Gaspar P., Ropert N. 2002. Activity dependent presynapptic role of the serotonin 1B receptors on the thalamocortical transmission in the somatosensory pathway of the neonatal mice.J. Neurosci. 22, 886–900.
Lebrand C.et al. 1996. Transient uptake and storage of serotonin in developing thalamic neurons.Neuron 17, 823–835.
Le Grand R., Mondloch C.J., Maurer D., Brent H.P. 2001. Neuroperception Early visual experience and face processing.Nature 410, 890.
Lendvai B., Stern E.A., Chen B., Svoboda K. 2000. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo [see comments].Nature 404, 876–881.
Marks G.A., Shaffery J.P., Oksenberg A., Speciale S.G., Roffwarg H.P. 1995. A functional role for REM sleep ion brain maturation.Behav. Brain Res. 69, 1–11.
Marty S., Berzaghi M., Berninger B. 1997. Neurotrophins and activity-dependent plasticity of cortical interneurons.Trends Neurosci. 20, 198–202.
Marty S., Wehrle R., Sotelo C. 2000. Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus.J. Neurosci. 20, 8087–8095.
McAllister A.K., Katz L.C., Lo D.C. 1999. Neurotrophins and synaptic plasticity.Annu. Rev. Neurosci. 22, 295–318.
Penfield W., Boldrey E. 1937. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation.Brain 60: 389–443.
Rakic P., Bourgeois J.P., Eckenhoff M.F., Zecevic N., Goldman-Rakic P.S. 1986. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex.Science 232, 232–235.
Rebsam A., Seif I., Gaspar P. 2002. Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosoensory cortex.J. Neurosci. 22, 8541–42.
Salichon N.et al. 2001. Excessive Activation of Serotonin 5-HT. 1B Receptors Disrupts the Formation of Sensory Maps in Monoamine Oxidase A and 5-HT Transporter Knock-Out Mice.J. Neurosci. 21, 884–896.
Schlaggar B.L., Fox K., O’Leary D.D. 1993. Postsynaptic control of plasticity in developing somatosensory cortex.Nature 364, 623–626.
Simons D.J., Land P.W. 1987. Early experience of tactile stimulation influences organization of somatic sensory cortex.Nature 326, 694–697.
Sur M., Leamey C.A. 2001. Development and plasticity of cortical areas and networks.Nat. Rev. Neurosci. 2, 251–262.
Upton A.L.et al. 1999. Excess of serotonin 5-HT. alters the segregation of ispilateral and contralateral retinal projections in monoamine oxidase A knock-out mice: possible role of 5-HT uptake in retinal ganglion cells during development.J. Neurosci. 19, 7007–7024.
Van der Loos H., Woolsey T.A. 1973. Somatosensory cortex: structural alterations following early injury to sense organs.Science 179, 395–398.
Welker E., Van der Loos H. 1986. Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: a comparative study in six strains of mice bred for different patterns of mystacial vibrissae.J. Neurosci. 6, 3355–3373.
Wiesel T.N. Hubel D.H. 1965. Extent of recovery from the effects of visual deprivation in kittens.J. Neurophysiol. 28, 1060–1072.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gaspar, P. Périodes critiques de plasticité des cartes sensorielles corticales. Psychiatr Sci Hum Neurosci 1, 22–30 (2003). https://doi.org/10.1007/BF03005190
Issue Date:
DOI: https://doi.org/10.1007/BF03005190