Skip to main content
Log in

Aspects of phytoremediation of organic pollutants

  • Review Articles
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Phytoremediation is a quite novel technique to clean polluted soils using plants. In theory, phytoremediation methods are cheap, are accepted by the public and, compared to physical or chemical approaches, are ecologically advantageous. Until today, however, there are only a few examples of successful applications. One reason is that the processes involved are complex, and a full clean up may require many years. Plants affect the water balance of a site, they change redox potential and pH, and stimulate microbial activity of the soil. These indirect influences may accelerate degradation in the root zone or reduce leaching of compounds to groundwater. Compounds taken up into plants may be metabolised, accumulated, or volatilised into air. Based on these processes, several phytoremediation methods have been developed: Phytoextraction, rhizofiltra-tion, phytostabilisation, rhizo and phytodegradation, pump and tree, land farming, phytovolatilisation, hydraulic control and more. Already in use are plants (and here willow, poplar and grass) for the degradation of petroleum products, aromatic hydrocarbons (BTEX), chlorinated solvents, explosives and cyanides. However, phytotoxicity and pollutant mass balances were rarely documented. Often, the success of the projects was not controlled, and only estimates can be made about the applicability and the potential of phytoremediation. This lack of experience about possibilities and limitations seems to be a hindrance for a broader use of these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen AJ (2000): Popler skal rense gasvserksgrund. Ingeniøren44 (3 Nov 00), 7 (in Danish)

    Google Scholar 

  • Barret M (1995): Metabolism of herbicides by cytochrome P 450 in corn. Drug metabolism and drug interactions12, 299–315

    Google Scholar 

  • Baeder-Bederski O, Kuschk P, Stottmeister U (1999): Phytovolatilization of organic contaminants. In: Heiden S, Erb R, Warreimann J, Dierstein R, Eds, Biotechnologie im Umweltschutz. Erich Schmidt, Berlin, 175–183

    Google Scholar 

  • Black H (1999): Phytoremediation: A growing field with some concerns. The Scientist13, 1st March 1999, 5–6

    Google Scholar 

  • Briggs G, Bromilow R, Evans A (1982): Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic Sci13, 495–504

    Article  CAS  Google Scholar 

  • Briggs G, Rigitano R, Bromilow R (1987): Physico-chemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pestic Sci19, 101–112

    Article  CAS  Google Scholar 

  • Brix H, Sorrell BK, Schierup H-H (1996): Gas fluxes achieved by in situ convective flow inPhragmites australis. Aquatic Botany54, 151–163

    Article  Google Scholar 

  • Burken JG, Schnoor JL (1998): Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol32, 3379–3385

    Article  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1996): Phytoremediation: Plant uptake of atrazine and role of root exudates. ASCE J. Environ. Engineering122, 958–963

    Article  Google Scholar 

  • Dobson MC, Moffat AJ (1995): A reevaluation of objections to tree planting on containment landfills. Waste Management& Research13, 579–600

    Google Scholar 

  • Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA, Strand SE, Gordon MP (2000): Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc Natl Acad Sci USA97, 6287–6291

    Article  CAS  Google Scholar 

  • Doucette WJ, Bugbee B, Hayhurst S, Plahen WA, Donney DC, Taffinder SA, Edwards R (1998): Phytoremediation of dissolved. phase trichloroethylene using mature vegetation. In: Wickra-manayake GB, Hinchee RE, Eds, Bioremediation and Phytoremediation, Chlorinated and Recalcitrant Compounds. Battelle Press, 251–256

  • EPA Environmental Protection Agency (2000): Introduction to Phytoremediation. EPA-report EPA/600/R-99/107. Mai 2000 athttp://clu-in.org/techpubs.htm

  • EPA Environmental Protection Agency (1998): Phytoremediation of TCE in groundwater usingPopulus. EPA-report. Mai 2000 athttp://clu-in.org/products/phytotce.htm

  • Flathman PE, Lanza GR (1998): Phytoremediation, current views on an emerging green technology. J Soil Contam7, 415–432

    Article  Google Scholar 

  • Fletcher JS, Hedge RS (1995): Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere31, 3009–3014

    Article  CAS  Google Scholar 

  • Fletcher J (1990): Use of algae versus vascular plants to test for chemical toxicity. In: Wang W, Gorsuch JW, Lower WR, Eds, Plants for Toxicity Assessment. ASTM STP 1091 American Society for Testing and Materials, Philadelphia, 33–39

    Google Scholar 

  • Frohne D, Jensen U (1985): Systematik des Pflanzenreiches unter besonderer Berücksichtigung chemischer Merkmale und pflanzlicher Drogen. Gustav Fischer, Stuttgart, Germany (in German)

    Google Scholar 

  • Grosse W, Jovy K, Tiebel H (1996): Influence of plants on redox potential and methane production in water-saturated soil. Hydrobiologica340, 93–99

    Article  CAS  Google Scholar 

  • Grosse W, Frye J, Lattermann S (1992): Root aeration in wetland trees by pressurized gas transport. Tree Physiology10, 285–295

    Google Scholar 

  • Hülster A, Müller JF, Marschner H (1994): Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environ Sci Technol28, 1110–1115

    Article  Google Scholar 

  • Hülster A, Marschner H (1995): PCDD/PCDF-complexing compounds in zucchini. Organohalogen Compounds24, 493–495

    Google Scholar 

  • ITRC Interstate Technology and Regulatory Cooperation Work Group / Phytoremediation Work Team (1999): Phytoremediation Decision Tree. Homepage ITRChttp://www.itrcweb.org. Document mirrored athttp://www.imt.dtu.dk/courses/63 190/stt/research2.htm (March 2001)

  • Jordahl JL, Foster L, Schnoor JL, Alvarez PJJ (1997): Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ Toxicol Chem16, 1318–1321

    Article  CAS  Google Scholar 

  • Karlson U, Uotila J, Jacobsen CS (1995): Use of plants with inoculated micro-organisms for soil cleaning (in Danish). Patent Office, Copenhagen, 25 January 1995. Pat. No. 173–559

  • Klein M (2000): Langjähriger Wasserhaushalt von Gras- und Wald-beständen. In: Matthies M, Beiträge des Instituts für Umweltsystemforschung, ISSN 1433–3805, Vol 17 (in German)

  • Komossa D, Langebartels C, Sandermann jr H (1995): Metabolic processes for organic chemicals in plants. In: Trapp S, Mc Farlane C, Eds, Plant Contamination - Modeling and Simulation of Organic Chemical Processes. Lewis Pub., Boca Raton, Florida, USA, 69–103

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology. Springer, Berlin, 3rd ed.

    Google Scholar 

  • Matthies M, Behrendt H (1995): Dynamics of leaching, uptake, and translocation: The simulation network atmosphere-plant-soil (SNAPS). In: Trapp S, Mc Farlane C, Eds, Plant Contamination - Modeling and Simulation of Organic Chemical Processes. Lewis Pub., Boca Raton, Florida, USA, 215–243

    Google Scholar 

  • Neumann G, Hülster A, Marschner H (1996): Identifizierung PCDD/F-mobilisierender Verbindungen in Wurzelexsudaten von Zucchini. Veröff. PAÖ16, 513–528 (in German)

    CAS  Google Scholar 

  • Newman LA, Wang X, Muiznieks I, Ekuan G, Ruszaj M, Cortellucci R, Domroes D, Karscig G, Newman T, Crampton RS et al. (1999): Remediation of trichloroethylene in an artificial aquifer with trees: A controlled field study. Environ Sci Technol33, 2257–2265

    Article  CAS  Google Scholar 

  • Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff BB, Wilmoth J, Heilman P, Gordon MP (1997): Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol31, 1062–1067

    Article  CAS  Google Scholar 

  • Orchard BJ, Doucette WJ, Chard JK, Bugbee B (2000): Uptakeof trichloroethene by hybrid poplar trees grown hydroponically in flow-through plant growth chambers. Environ Tox Chem19, 895–903

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1989): Soil microbiology and biochemistry. Academic Press, San Diego

    Google Scholar 

  • Perrson G (1995): Willow stands evapotranspiration simulated for Swedish soils. Agricultural Water Management28, 271–293

    Article  Google Scholar 

  • Pflugmacher S, Schröder P (1995): Glutathione Stransferases in trees: inducibility by various organic xenobiotics. Z Pflanzenernähr Bodenk158, 71–73

    Article  CAS  Google Scholar 

  • Radwan S, Sorkhon N, El-Nemri I (1995): Oil biodégradation around roots. Nature376, 302

    Article  CAS  Google Scholar 

  • Richter G. (1998): Stoffwechselphysiologie der Pflanzen. Thieme, Stuttgart, Germany, 6th ed. (in German)

    Google Scholar 

  • Romantschuk M, Sarand I, Petänen T, Peltola R, Jonsson-Vihanne M, Koivula T, Yrjälä K, Haahtela K (2000): Means to improve the effect of in situ bioremediation of contaminated soil: an overview of novel approaches. Environ Poll107, 179–185

    Article  CAS  Google Scholar 

  • Sandermann H (1994): Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics4, 225–241

    Article  CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Lee Wolfe N, Carreira LH (1995): Phytoremediation of organic and nutrient contaminants. Environ Sci Technol29, 318A-323A

    Article  CAS  Google Scholar 

  • Schnoor JL (1997): Phytoremediation. Technology Evaluation Report to the Ground-Water Remediation Technologies Center. August 2000 athttp://www.gwrtac.org/pdf/phyto e.pdf

  • Siciliano SD, Germida JJ (1998): Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev6, 65–79

    Article  CAS  Google Scholar 

  • Suominen L, Jussila MM, Mäkeläinen K, Romantschuk M, Lindström K (2000): Evaluation of theGalega-Rhizobium galegae system for the bioremediation of oil-contaminated soil. Environmental pollution107, 239–244

    Article  CAS  Google Scholar 

  • Thompson PL, Ramer LA, Guffey AP, Schnoor JL (1998): Decreased transpiration in poplar trees exposed to 2,4,6-trinitrotoluene. Environ Toxicol Chem17, 902–906

    Article  CAS  Google Scholar 

  • Trapp S, Mc Farlane JC, Matthies M (1994): Model for uptake of xenobiotics into plants - Validation with bromacil experiments. Environ Toxicol Chem13, 413–422

    Article  CAS  Google Scholar 

  • Trapp S (1995): Model for uptake of xenobiotics into plants. In: Trapp S, Mc Farlane C, Eds, Plant Contamination - Modeling and Simulation of Organic Chemical Processes. Lewis Pub., Boca Raton, Florida, USA, 107–151

    Google Scholar 

  • Trapp S (2000): Modeling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manage Sci56, 767–778

    Article  CAS  Google Scholar 

  • Trapp S, Zambrano KC, Kusk KO, Karlson U (2000): A phytotoxicity test using transpiration of willows. Arch Environ Contam Toxicol39, 154–160

    Article  CAS  Google Scholar 

  • Trapp S, Köhler A, Larsen LC, Zambrano KC, Karlson U (2001): Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees. JSS - J Soils and Sediments, submitted

  • Trapp S, Koch I, Christiansen H (2001a): Aufnahme von Cyaniden in Pflanzen - Risiko oder Chance für die Phytoremediation? UWSF - Z Umweltchem Ökotox13, 20–28 (in German)

    CAS  Google Scholar 

  • Trapp S, Larsen M, Christiansen H (2001b): Experimente zum Verbleib von Cyanid nach Aufnahme in Pflanzen. UWSF - Z Umweltchem Ökotox13, 29–37 (in German)

    CAS  Google Scholar 

  • Voet D, Voet JG, Pratt CW (1998): Fundamentals of biochemistry. John Wiley & Sons, New York

    Google Scholar 

  • Watanabe ME (1997): Phytoremediation on the brink of commercialisation. Env Sci Technol31, 182A-186A

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Trapp or Ulrich Karlson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trapp, S., Karlson, U. Aspects of phytoremediation of organic pollutants. J Soils & Sediments 1, 37–43 (2001). https://doi.org/10.1007/BF02986468

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02986468

Keywords

Navigation