Skip to main content
Log in

Effect of triploidy on the body size, general organization and cellular structure inGasterosteus aculeatus (L)

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Summary

1. In experimentally produced triploidGasterosteus aculeatus, the body size is similar to that of the normal diploid forms, but the proportions of the trunk and tail to the body size are different. In triploids the trunk is proportionately shorter and the tail longer than in the diploid controls.

2. In the triploids, the nucleus and the cell size in cartilage, blood and nerve cells etc. are much larger and approximately bear a ratio of 3:2 to those of the corresponding cells in the diploid individuals.

3. The different organs like brain, retina, occipital arch, pronephric ducts etc., remain of the same size in both the triploids and the diploids; however, the number of cells in the triploid organs is less than those of the diploid.

4. In the triploid forms, the increase in size of the cells is compensated by a corresponding decrease in the number of cells, because in both the cases the size of the different organs remains more or less the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Artom, C. (1925). Gigantismo e costituzioni genetiche nelle razze e nelle specie tetraploidi.Riv. Biol.,7, 533–555.

    Google Scholar 

  • Artom, C. (1928). La polyploidie dans ses corrélations morphologiques et biologiques.C.R. Soc. Biol., Paris.,99, 29–49.

    Google Scholar 

  • Beatty, R. A. andFischberg, M. (1951). Cell number in haploid, diploid and polyploid mouse embryos.J. Exp. Biol.,28, 541–552.

    Google Scholar 

  • Darlington, C. D. (1937). Recent advances in Cytology. (2nd edition). Philadelphia.

  • Fankhauser, G. (1941). Cell size, organ and body size in triploid newts (Triturus viridescens).J. Morph.68, 161–177.

    Article  Google Scholar 

  • Fankhauser, G. (1945a). The effects of changes in chromosome number on amphibian development.Quart. Rev. Biol.,20, 20–78.

    Article  Google Scholar 

  • Fankhauser, G. (1945b). Maintenance of normal structure in heteroploid salamander larvae, through compensation of changes in cell size by adjustment of cell number and cell shape.J. Exp. Zool.,100, 445–455.

    Article  Google Scholar 

  • Fankhauser, G. andWatson, R. C. (1949). The effect of pituitary implantation on diploid and triploid larvae of the newt,Triturus viridescens, with special reference to the gonads.J. Exp. Zool.,111, 349–392.

    Article  PubMed  CAS  Google Scholar 

  • Fischberg, M. (1944). Veränderungen der Chromosomenzahl beiTriton alpestris nach Kältebehandlung der Eier.Rev. Suisse Zool.,51, 430–436.

    Google Scholar 

  • Fischberg, M. (1948b). Bestehen in der Ausbildung der Artmerkmale Unterschiede zwischen denTriton palmatus ♀ undTriton alpestris ♂?Rev. Suisse Zool.,55, 304–310.

    Google Scholar 

  • Heilborn, O. (1934). On the origin and preservation of polyploidy.Hereditas.,19, 233–242.

    Article  Google Scholar 

  • Inaba, F. (1939). Diploid males and triploid females of the parasitic wasp,Habrobracon pectinophorae Watanabe.Cytologia,9, 517–523.

    Google Scholar 

  • Kawaguchi, E. (1936). Der Einfluss der Eierbehandlung mit Zentrifugierung auf die Vererbung bei dem Seidenspinner. I. Uber experimentelle Auslösung der polyploiden Mutation.J. Fac. Agric. Hokkaido Univ.,38, 111–133.

    Google Scholar 

  • Kawamura, T. (1941a). Polyploidy in the Japanese newt,Triturus pyrrhogaster.Zool. Mag. (Tokyo),53, 550–552.

    Google Scholar 

  • Kawamura, T. (1941b). III. Triploid frogs developed from fertilized eggs.Proc. Imp. Acad. Japan,17, 523–526.

    Google Scholar 

  • Morgan, L. V. (1925). Polyploidy inDrosophila melanogaster with two attached chromosomes.Genetics,10, 148–178.

    PubMed  CAS  Google Scholar 

  • Muntzing, A. (1936). The evolutionary significance of autopolyploidy.Hereditas21, 263–378.

    Google Scholar 

  • Seiler, J. (1938). Ergebnisse aus der Kreuzung einer diploid-parthenogenetischenSolenobia triquetrella mit Männchen einer bisexuellen Rasse.Rev. Suisse Zool.,45, 405–412.

    Google Scholar 

  • Swarup, H. (1956). Production of Heteroploidy in the Three-Spined SticklebackGasterosteus aculeatus (L).Nature, Lond.,178, 1124–1125.

    Article  Google Scholar 

  • Torvik, M. M. (1931). Genetic evidence for diploidism of biparental males inHabrobracon.Biol. Bull.,61, 139–156.

    Article  Google Scholar 

  • Vandel, A. (1928). La parthenogénèse géographique.Bull. Biol.,62, 164–281.

    Google Scholar 

  • Wettstein, F. von. (1927). Die Erscheinung der Heteroploidie, besonders im Pflanzenreich.Ergebn. Biol.,2, 311–356.

    Google Scholar 

  • Wettstein, F. von. (1937). Experimentelle Untersuchungen Zum Artbildungsproblem. I. Zellgrossenregulation und Fertilwerden einer polyploiden Bryum-Sippe.Z. ind. Abst. Ver. (lehre),74, 34–53.

    Article  Google Scholar 

  • Whiting, A. R. (1928). Genetic evidence for diploid males in Habrobracon?Biol. Bull.,53, 438–449.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swarup, H. Effect of triploidy on the body size, general organization and cellular structure inGasterosteus aculeatus (L). J Genet 56, 143–155 (1959). https://doi.org/10.1007/BF02984741

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02984741

Keywords

Navigation