Skip to main content

Advertisement

Log in

Hematopoietic Stem Cell Gene Therapy

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Gene therapy applications that target hematopoietic stem cells (HSCs) offer great potential for the treatment of hematologic disease. Despite this promise, clinical success has been limited by poor rates of gene transfer, poor engraftment of modified cells, and poor levels of gene expression. We describe here the basic approach used for HSC gene therapy, briefly review some of the seminal clinical trials in the field, and describe several recent advances directed toward overcoming these limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cline MJ, Stang H, Mercola K, et al. Gene transfer in intact animals.Nature. 1980;284:422–425.

    Article  PubMed  CAS  Google Scholar 

  2. Friedmann T. The origins, evolution and directions of human gene therapy. In: Friedmann T, ed.The Development of Human Gene Therapy. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1999:1–20.

    Google Scholar 

  3. Ferrari G, Rossini S, Giavazzi R, et al. An in vivo model of somatic cell gene therapy for human severe combined immunodeficiency.Science. 1991;251:1363–1366.

    Article  PubMed  CAS  Google Scholar 

  4. Blaese RM, Culver KW, Miller AD, et al. T-lymphocyte directed gene therapy for ADA-SCID: initial trial results after 4 years.Science. 1995;270:475–480.

    Article  PubMed  CAS  Google Scholar 

  5. Kohn DB, Hershfield MS, Carbonaro D, et al. T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates.Nat Med. 1998;4:775–780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Brenner MK, Rill DR, Moen RC, et al. Gene-marking to trace origin of relapse after autologous bone-marrow transplantation.Lancet. 1993;341:85–86.

    Article  PubMed  CAS  Google Scholar 

  7. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease.Science. 2000;288:669–672.

    Article  PubMed  CAS  Google Scholar 

  8. Aiuti A, Slavin S, Aker M, et al. Correction of ADA-SCID defect without PEG-ADA therapy by stem/progenitor cell gene therapy combined with a non-myeloablative conditioning.Blood. 2001;98:780a-781a.

    Google Scholar 

  9. Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B. Isolation of a candidate human hematopoietic stem-cell population.Proc Natl Acad Sci U S A. 1992;89:2804–2808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Thomas ED. Landmarks in the development of hematopoietic cell transplantation.World J Surg. 2000;24:815–818.

    Article  PubMed  CAS  Google Scholar 

  11. Molineux G, Pojda Z, Hampson IN, Lord BI, Dexter TM. Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor.Blood. 1990;76:2153–2158.

    PubMed  CAS  Google Scholar 

  12. Dreger P, Suttorp M, Haferlach T, Loffler H, Schmitz N, Schroyens W. Allogeneic granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells for treatment of engraftment failure after bone marrow transplantation.Blood. 1993;81:1404–1407.

    PubMed  CAS  Google Scholar 

  13. Matsunaga T, Sakamaki S, Kohgo Y, Ohi S, Hirayama Y, Niitsu Y. Recombinant human granulocyte colony-stimulating factor can mobilize sufficient amounts of peripheral blood stem cells in healthy volunteers for allogeneic transplantation.Bone Marrow Transplant. 1993;11:103–108.

    PubMed  CAS  Google Scholar 

  14. Shpall EJ, Cagnoni PJ, Bearman SI, Ross M, Jones RB. Peripheral blood stem cells for autografting.Annu Rev Med. 1997;48:241–251.

    Article  PubMed  CAS  Google Scholar 

  15. Dunbar CE, Cottler-Fox M, O’Shaughnessy JA, et al. Retrovirally marked CD34- enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation.Blood. 1995;85:3048–3057.

    PubMed  CAS  Google Scholar 

  16. Dunbar CE, Seidel NE, Doren S, et al. Improved retroviral gene transfer into murine and rhesus peripheral blood or bone marrow repopulating cells primed in vivo with stem cell factor and granu-locyte colony-stimulating factor.Proc Natl Acad Sci U S A. 1996;93:11871–11876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Adler BK, Salzman DE, Carabasi MH, Vaughan WP, Reddy VV, Prchal JT. Fatal sickle cell crisis after granulocyte colony-stimulating factor administration.Blood. 2001;97:3313–3314.

    Article  PubMed  CAS  Google Scholar 

  18. Lu L, Xiao M, Shen RN, Grigsby S, Broxmeyer HE. Enrichment, characterization, and responsiveness of single primitive CD34 human umbilical cord blood hematopoietic progenitors with high proliferative and replating potential.Blood. 1993;81:41–48.

    PubMed  CAS  Google Scholar 

  19. Gluckman E. Current status of umbilical cord blood hematopoietic stem cell transplantation.Exp Hematol. 2000;28:1197–1205.

    Article  PubMed  CAS  Google Scholar 

  20. Parkman R, Weinberg K, Crooks G, Nolta J, Kapoor N, Kohn D. Gene therapy for adenosine deaminase deficiency.Annu Rev Med. 2000;51:33–47.

    Article  PubMed  CAS  Google Scholar 

  21. Repka T, Weisdorf DJ. Nonmyeloablative HPC transplantation.Transfusion. 2000;40:758–760.

    Article  PubMed  CAS  Google Scholar 

  22. Nilsson SK, Dooner MS, Tiarks CY, Weier HU, Quesenberry PJ. Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model.Blood. 1997;89:4013–4020.

    PubMed  CAS  Google Scholar 

  23. Maris M, Sandmaier BM, Maloney DG, et al. Non-myeloablative hematopoietic stem cell transplantation.Biol Blood Marrow Transplant. 1999;5:316–321.

    Article  Google Scholar 

  24. Storb R, Yu C, Barnett T, et al. Stable mixed hematopoietic chimerism in dog leukocyte antigen-identical littermate dogs given lymph node irradiation before and pharmacologic immunosup-pression after marrow transplantation.Blood. 1999;94:1131–1136.

    PubMed  CAS  Google Scholar 

  25. Miller AD, Eckner RJ, Jolly DJ, Friedmann T, Verma IM. Expression of retrovirus encoding human HPRT in mice.Science. 1983;225:630–632.

    Article  Google Scholar 

  26. Miller AD, Rosman GJ. Improved retroviral vectors for gene transfer and expression.BioTechniques. 1989;7:980–890.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Yee JK. Retroviral vectors. In: Friedmann T, ed.The Development of Human Gene Therapy. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1999:21–45.

    Google Scholar 

  28. Miller AD, Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production.Mol Cell Biol. 1986;6:2895–2902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Markowitz D, Goff S, Bank A. A safe packaging line for gene transfer: separating viral genes on two different plasmids.J Virol. 1988;62:1120–1124.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Miller AD, Miller DG, Garcia JV, Lynch CM. Use of retroviral vectors for gene transfer and expression.Methods Enzymol. 1993;217:581–599.

    Article  PubMed  CAS  Google Scholar 

  31. Miller AD, Whelan J. Progress in transcriptionally targeted and regulatable vectors for gene therapy.Hum Gene Ther. 1997;8:803–815.

    Article  PubMed  CAS  Google Scholar 

  32. Karlsson S, Papayannopoulou, T, Schweiger SG, Stamatoy-annopoulos G, Nienhuis AW. Retroviral-mediated transfer of genomic globin genes leads to regulated production of RNA and protein.Proc Natl Acad Sci U S A. 1987;84:2411–2415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Emery DW, Morrish F, Li Q, Stamatoyannopoulos G. Analysis of γ-globin expression cassettes in retrovirus vectors.Hum Gene Ther. 1999;10:877–888.

    Article  PubMed  CAS  Google Scholar 

  34. Challita PM, Skelton D, El-Khoueiry A, Yu XJ, Weinberg K, Kohn DB. Multiple modifications in cis elements in the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells.J Virol. 1995;69:748–755.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Robbins PB, Yu XJ, Skelton DM, et al. Increased probability of expression from modified retroviral vectors in embryonal stem cells and embryonal carcinoma cells.J Virol. 1997;71:9466–9474.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Hawley RG, Lieu FH, Fong AZ, Hawley TS. Versatile retroviral vectors for potential use in gene therapy.Gene Ther. 1994;1:136–138.

    PubMed  CAS  Google Scholar 

  37. Allay JA, Persons DA, Galipeau J, et al. In vivo selection of retro-virally transduced hematopoietic stem cells.Nat Med. 1998;4:1136–1143.

    Article  PubMed  CAS  Google Scholar 

  38. Kalberer CP, Pawliuk R, Imren S, et al. Preselection of retrovirally transduced bone marrow avoids subsequent stem cell gene silencing and age-dependent extinction of expression of human beta-glo-bin in engrafted mice.Proc Natl Acad Sci U S A. 2000;97:5411–5415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Cheng L, Du C, Lavau C, et al. Sustained gene expression in retrovirally transduced, engrafting human hematopoietic stem cells and their lympho-myeloid progeny.Blood. 1998;92:83–92.

    CAS  PubMed  Google Scholar 

  40. Bodine DM, Karlsson S, Nienhuis AW. Combination of interleukin 3 and 6 preserves stem cell function in culture and enhances retro-virus-mediated gene transfer into hematopoietic stem cells.Proc Natl Acad Sci U S A. 1989;86:8897–8901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bodine DM, Barette S, Seidel N, Orlic D, Miller AD. Transduction of mouse hematopoietic stem cells is more efficient with 10A1 retrovirus vectors than with amphotropic vectors.Stem Cells. 2000;18:152–153.

    Article  PubMed  CAS  Google Scholar 

  42. Emery DW, Andrews RG, Papayannopoulou T. Differences among nonhuman primates in susceptibility to bone marrow progenitor transduction with retrovirus vectors.Gene Ther. 2000;7:359–367.

    Article  PubMed  CAS  Google Scholar 

  43. Kiem HP, Heyward S, Winkler A, et al. Gene transfer into marrow repopulating cells: comparison between amphotropic and gibbon ape leukemia virus pseudotyped retroviral vectors in a competitive repopulation assay in baboons.Blood. 1997;90:4638–4645.

    PubMed  CAS  Google Scholar 

  44. Miller AD, Garcia VJ, von Shur N, Lynch CM, Wilson C, Eiden MV. Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus.J Virol. 1991;65:2220–2224.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Orlic D, Girard LJ, Jordan CT, Anderson SM, Cline AP, Bodine DM. The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction.Proc Natl Acad Sci U S A. 1996;93:11097–11102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kelly PF, Vandergriff J, Nathwani A, Nienhuis AW, Vanin EF. Highly efficient gene transfer into cord blood nonobese diabetic/ severe combined immunodeficiency repopulating cells by oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein.Blood. 2000;96:1206–1214.

    PubMed  CAS  Google Scholar 

  47. Goerner M, Horn PA, Peterson L, et al. Sustained multilineage gene persistence and expression in dogs transplanted with CD34(+) marrow cells transduced by RD114-pseudotype oncoretrovirus vectors.Gene Ther. 2001;98:2065–2070.

    CAS  Google Scholar 

  48. Barrette S, Douglas J, Orlic D, et al. Superior transduction of mouse hematopoietic stem cells with 10A1 and VSV-G pseudotyped retrovirus vectors.Mol Ther. 2000;1:330–338.

    Article  PubMed  CAS  Google Scholar 

  49. Nolta JA, Kohn DB. Comparison of the effects of growth factors on retroviral-mediated gene transfer and the proliferative status of human hematopoietic progenitor cells.Hum Gene Ther. 1990;1:257–268.

    Article  PubMed  CAS  Google Scholar 

  50. Kiem HP, Andrews RG, Morris J, et al. Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor.Blood. 1998;92:1878–1886.

    PubMed  CAS  Google Scholar 

  51. Hanenberg H, Xiao XL, Dilloo D, Hashino K, Kato I, Williams DA. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells.Nat Med. 1996;2:876–882.

    Article  PubMed  CAS  Google Scholar 

  52. Donahue RE, Sorrentino BP, Hawley RG, An DS, Chen IS, Wersto RP. Fibronectin fragment CH-296 inhibits apoptosis and enhances ex vivo gene transfer by murine retrovirus and human lentivirus vectors independent of viral tropism in nonhuman primate CD34+ cells.Mol Ther. 2001;3:359–367.

    Article  PubMed  CAS  Google Scholar 

  53. Sanyal A, Schuening FG. Increased gene transfer into human cord blood cells by centrifugation-enhanced transduction in fibronectin fragment-coated tubes.Hum Gene Ther. 1999;10:2859–2868.

    Article  PubMed  CAS  Google Scholar 

  54. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.Science. 1996;272:263–267.

    Article  PubMed  CAS  Google Scholar 

  55. Kafri T, van Praag H, Ouyang L, Gage FH, Verma IM. A packaging cell line for lentivirus vectors.J Virol. 1999;73:576–584.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P. HIV-1 genome nuclear import is mediated by a central DNA flap.Cell. 2000;101:173–185.

    Article  PubMed  CAS  Google Scholar 

  57. May C, Rivella S, Callegari J, et al. Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin.Nature. 2000;406:82–86.

    Article  PubMed  CAS  Google Scholar 

  58. Pawliuk R, Westerman KA, Fabry ME, et al. Correction of sickle cell disease in transgenic mouse models by gene therapy.Science. 2001;294:2368–2371.

    Article  PubMed  CAS  Google Scholar 

  59. Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors.Science. 1999;283:682–686.

    Article  PubMed  CAS  Google Scholar 

  60. Hirata RK, Miller AD, Andrews RG, Russell DW. Transduction of hematopoietic cells by foamy virus vectors.Blood. 1996;88:3654–3661.

    PubMed  CAS  Google Scholar 

  61. Russell DW, Miller AD. Foamy virus vectors.J Virol. 1996;70:217–222.

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Trobridge GD, Russell DW. Helper-free foamy virus vectors.Hum Gene Ther. 1998;9:2517–2525.

    Article  PubMed  CAS  Google Scholar 

  63. Vassilopoulos G, Trobridge GD, Josephson NC, Russell DW. Gene transfer into murine hematopoietic stem cells with helper-free foamy virus vectors.Blood. 2001;98:604–609.

    Article  PubMed  CAS  Google Scholar 

  64. Josephson NC, Vassilopoulos G, Trobridge GD, et al. Transduction of SCID repopulating cells by a human foamy virus vector.Mol Ther. 2001;5:S302.

    Google Scholar 

  65. Robbins PD, Tahara H, Ghivizzani SC. Viral vectors for gene therapy.Trends Biotechnol. 1998;16:35–40.

    Article  PubMed  CAS  Google Scholar 

  66. Muzyczka N. Use of adeno-associated virus as a general transduction vector for mammalian cells.Curr Top Microbiol Immunol. 1992;158:97–129.

    PubMed  CAS  Google Scholar 

  67. Allen JM, Halbert CL, Miller AD. Improved adeno-associated virus vector production with transfection of a single helper adenovirus gene, E4orf6.Mol Ther. 2000;1:88–95.

    Article  PubMed  CAS  Google Scholar 

  68. Rutledge EA, Russell DW. Adeno-associated virus vector integration junctions.J Virol. 1997;71:8429–8436.

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Fisher-Adams G, Wong KK, Podsakoff G, Forman SJ, Chatterjee S. Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction.Blood. 1996;88:492–504.

    PubMed  CAS  Google Scholar 

  70. Russell DW, Kay MA. Adeno-associated virus vectors and hematology.Blood. 1999;94:864–874.

    PubMed  CAS  Google Scholar 

  71. Hirata RK, Russell D. Design and packaging of adeno-associated virus gene targeting vectors.J Virol. 2000;74:4612–4620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A. Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector.J Virol. 2000;74:2567–2583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lieber A, Steinwaerder DS, Carlson CA, Kay MA. Integrating ade-novirus-adeno-associated virus hybrid vectors devoid of all viral genes.J Virol. 1999;73:9314–9324.

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Karpen GH. Position-effective variegation and the new biology of heterochromatin.Curr Opin Genet Dev. 1994;4:281–291.

    Article  PubMed  CAS  Google Scholar 

  75. Neff T, Shotkoski F, Stamatoyannopoulos G. Stem cell gene therapy, position effects and chromatin insulators.Stem Cells. 1997;15(suppl 1):265–271.

    PubMed  CAS  Google Scholar 

  76. Rivella S, Sadelain M. Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and trans-gene silencing.Semin Hematol. 1998;35:112–125.

    PubMed  CAS  Google Scholar 

  77. Raftopoulos H, Ward M, Leboulch P, Bank A. Long-term transfer and expression of the human β-globin gene in a mouse transplant model.Blood. 1997;90:3414–3422.

    PubMed  CAS  Google Scholar 

  78. Lung Hy, Meeus IS, Weinberg RS, Atweh GF. In vivo silencing of the human γ-globin gene in murine erythroid cells following retroviral transduction.Blood Cells Mol Dis. 2000;26:613–619.

    Article  PubMed  CAS  Google Scholar 

  79. Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G. A chromatin insulator protects retrovirus vectors from position effects.Proc Natl Acad Sci U S A. 2000;97:9150–9155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Rivella S, Callegari JA, May C, Tan CW, Sadelain M. The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites.J Virol. 2000;74:4679–4687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Emery DW, Stamatoyannopoulos G. Stem cell gene therapy for the β-chain hemoglobinopathies—problems and progress.Ann NY Acad Sci. 1999;872:94–107.

    Article  PubMed  CAS  Google Scholar 

  82. Bell AC, Felsenfeld G. Stopped at the border: boundaries and insulators.Curr Opin Genet Dev. 1999;9:191–198.

    Article  PubMed  CAS  Google Scholar 

  83. Udvardy A. Dividing the empire: boundary chromatin elements delimit the territory of enhancers.EMBO J. 1999;18:1–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Prioleau MN, Nony P, Simpson M, Felsenfeld G. An insulator element and condensed chromatin region separate the chicken β-globin locus from an independently regulated erythroid-specific folate receptor gene.EMBO J. 1999;18:4035–4048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Chung JH, Bell AC, Felsenfeld G. Characterization of the chicken pj-globin insulator.Proc Natl Acad Sci U S A. 1997;94:575–580.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Chung JH, Whiteley M, Felsenfeld G. A 5′ element of the chicken pj-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila.Cell. 1993;74:505–514.

    Article  PubMed  CAS  Google Scholar 

  87. Wang Y, DeMayo FJ, Tsai SY, O’Malley BW. Ligand-inducible and liver-specific target gene expression in transgenic mice.Nat Biotechnol. 1997;15:239–243.

    Article  PubMed  CAS  Google Scholar 

  88. Taboit-Dameron F, Malassagne B, Viglietta C, et al. Association of the 5′ HS4 sequence of the chicken β-globin locus control region with human EF1 alpha gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits.Transgenic Res. 1999;8:223–235.

    Article  PubMed  CAS  Google Scholar 

  89. Bell AC, West AG, Felsenfeld G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators.Cell. 1999;98:387–396.

    Article  PubMed  CAS  Google Scholar 

  90. Yannaki E, Emery DW, Tubb J, Stamatoyannopoulos G. Topological constraints governing the use of a chicken HS4 insulator in retrovirus vectors [abstract].Mol Ther. 2000;1(pt 2):S138.

    Google Scholar 

  91. Emery DW, Yannaki E, Nishino T, Tubb J, Li Q, Stamatoyannopoulos G. Flanking an oncoretrovirus vector for human gamma globin with a chromatin insulator greatly reduces gene silencing in vivo [abstract].Mol Ther. 2001;3:S150.

    Google Scholar 

  92. Chen CJ, Chin JE, Ueda K, et al. Internal duplication and homology with bacterial transport proteins in the MDR1 (P-glycopro-tein) gene from multidrug-resistant human cells.Cell. 1986;47:381–389.

    Article  PubMed  CAS  Google Scholar 

  93. Pastan I, Gottesman MM, Ueda K, Lovelace E, Rutherford AV, Willingham MC. A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells.Proc Natl Acad Sci U S A. 1988;85:4486–4490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Galski H, Sullivan M, Willingham MC, et al. Expression of a human multidrug resistance cDNA (MDR1) in the bone marrow of trans-genic mice: resistance to daunomycin-induced leukopenia.Mol Cell Biol. 1989;9:4357–4363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Mickisch GH, Licht T, Merlino GT, Gottesman MM, Pastan I. Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: efficacy, potency, and toxicity.Cancer Res. 1991;51:5417–5424.

    PubMed  CAS  Google Scholar 

  96. Sorrentino BP, Brandt SJ, Bodine D, et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1.Science. 1992;257:99–103.

    Article  PubMed  CAS  Google Scholar 

  97. Hesdorffer C, Ayello J, Ward M, et al. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemo-protection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation.J Clin Oncol. 1998;16:165–172.

    Article  PubMed  CAS  Google Scholar 

  98. Hanania EG, Giles RE, Kavanagh J, et al. Results of MDR-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to posttransplant hematopoietic recovery following intensive systemic therapy.Proc Natl Acad Sci U S A. 1996;93:15346–15351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Blau CA, Neff T, Papayannopoulou T. Cytokine prestimulation as a gene therapy strategy: implications for using the MDR1 gene as a dominant selectable marker.Blood. 1997;89:146–154.

    PubMed  CAS  Google Scholar 

  100. Bunting KD, Galipeau J, Topham D, Benaim E, Sorrentino B P. Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice.Blood. 1998;92:2269–2279.

    PubMed  CAS  Google Scholar 

  101. Sellers SE, Tisdale JF, Agricola BA, et al. The effect of multidrug-resistance 1 gene versus neo transduction on ex vivo and in vivo expansion of rhesus macaque hematopoietic repopulating cells.Blood 2001;97:1888–1891.

    Article  PubMed  CAS  Google Scholar 

  102. Simonsen CC, Levinson AD. Isolation and expression of an altered mouse dihydrofolate reductase cDNA.Proc Natl Acad Sci U S A. 1983;80:2495–2499.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Antonchuk J, Sauvageau G, Humphries RK. HOXB4 overexpres-sion mediates very rapid stem cell regeneration and competitive hematopoietic repopulation.Exp Hematol. 2001;29:1125–1134.

    Article  PubMed  CAS  Google Scholar 

  104. Ito K, Ueda Y, Kokubun M, et al. Development of a novel selective amplifier gene for controllable expansion of transduced hemato-poietic cells.Blood. 1997;90:3884–3892.

    PubMed  CAS  Google Scholar 

  105. Matsuda KM, Kume A, Ueda Y, Urabe M, Hasegawa M, Ozawa K. Development of a modified selective amplifier gene for hemato-poietic stem cell gene therapy.Gene Ther. 1999;6:1038–1044.

    Article  PubMed  CAS  Google Scholar 

  106. Xu R, Kume A, Matsuda KM, et al. A selective amplifier gene for tamoxifen-inducible expansion of hematopoietic cells.J Gene Med. 1999;1:236–244.

    Article  PubMed  CAS  Google Scholar 

  107. Zeng H, Masuko M, Jin L, Neff T, Otto KG, Blau CA. Receptor specificity in the self-renewal and differentiation of primary multi-potential hemopoietic cells.Blood. 2001;98:328–334.

    Article  PubMed  CAS  Google Scholar 

  108. Blau CA, Peterson KR, Drachman JG, Spencer DM. A proliferation switch for genetically modified cells.Proc Natl Acad Sci U S A. 1997;94:3076–3081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Jin L, Asano H, Blau CA. Stimulating cell proliferation through the pharmacologic activation of c-kit.Blood. 1998;91:890–897.

    PubMed  CAS  Google Scholar 

  110. Jin L, Siritanaratkul N, Emery DW, et al. Targeted expansion of genetically modified bone marrow cells.Proc Natl Acad Sci U S A. 1998;95:8093–8097.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Jin L, Zeng H, Chien S, et al. In vivo selection using a cell-growth switch.Nat Genet. 2000;26:64–66.

    Article  PubMed  CAS  Google Scholar 

  112. Richard RE, Wood B, Zeng H, Jin L, Papayannopoulou T, Blau CA. Expansion of genetically modified primary human hemopoi-etic cells using chemical inducers of dimerization.Blood. 2000;95:430–436.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Stamatoyannopoulos.

About this article

Cite this article

Emery, D.W., Nishino, T., Murata, K. et al. Hematopoietic Stem Cell Gene Therapy. Int J Hematol 75, 228–236 (2002). https://doi.org/10.1007/BF02982035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982035

Key words