Skip to main content
Log in

Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands

  • Original Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

An attempt was made to investigate the effect of TMB-8 [3,4,5-trimethoxybenzoate-8 (N,N-diethylamino) octyl ester], which is known to be an inhibitor of intracellular Ca2+ release, on catecholamines (CA) secretion evoked by Ach, excess K+, DMPP, McN-A-343 and caffeine from the isolated perfused rat adrenal glands and to clearify its mechanism of action.

The pretreatment with a low dose of TMB-8 (10 μM) for 20 min led to marked inhibition in CA secretion evoked by Ach (5.32 mM), excess K+ (56 mM), DMPP (100 μM), McN-A-343 (100 μM) and BAY-K 8644 (10−5M). Caffeine-induced CA secretion was similar to that of control only during the first periods (0–3 min) but thereafter marked inhibition in CA secretion evoked by caffeine was observed during the rest periods up to 30 min. The increased moderate concentration of TMB-8 (30 μM) caused the result similar to that of 10 μM TMB-8. However, in adrenal glands preloaded with a high dose of TMB-8 (100 μM), CA releases evoked by Ach, excess K+, DMPP, McN-A-343 and caffeine were almost completely blocked by the drug.

These experimental data demonstrate that TMB-8 may inhibit cholinergic receptor-mediated and also depolarization-dependent CA secretion, suggesting that these TMB-8 effects seem to be mediated through inhibiting influx of extracellular calcium into the rat adrenal medullary chromaffin cells as well as reducing the release of calcium from intracellular sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Charo, I. F., Feinman and Detwiler, T. C.: Inhibition of platelet secretion by an antagonist of intracellular calcium.Biochim. Biophys. Res. Commun. 72, 1462 (1976).

    Article  CAS  Google Scholar 

  2. Chiou, C. Y. and Malagodi, M. H.: Studies on the mechanism of action of a new antagonist-(N,N-diethylamino-octyl-3,4,5-trimethoxybenzoate hydrochloride in smooth and skeletal muscles.Br. J. Pharmacol. 53 279 (1975).

    PubMed  CAS  Google Scholar 

  3. Rubin, R. P., Shen, J. C. and Laychock, S. G.: Evidence for the mobilization of cellular calcium by prostacyline in cat adrenocortical cells. The effect of TMB-8.Cell Calcium.11, 391 (1980).

    Article  Google Scholar 

  4. Smith, R. J. and Iden, S. S.: Phorbol myristate acetate-induced release of granule enzymes form human neutrophils inhibition by the calcium antagonist, 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride.Biochem. Biophys. Res. Commun. 91, 263 (1979).

    Article  PubMed  CAS  Google Scholar 

  5. Wiedenkeller, D. E. and Sharp, G. W. G.: Unexpected potentiation of insulin release by the calcium store blocker TMB-8,Endocrinology.114, 116 (1984).

    PubMed  CAS  Google Scholar 

  6. Misbahuddin, M., Isosaki M., Houchi, H. and Oka, M.: Muscarinic receptor-mediated increase in cytoplasmic free Ca2+ in isolated bovine adrenal medullary cells. Effects of TMB-8 and phorbor ester TPA.FEBS Lett.,190, 25 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. Sasakawa, N., Yamamoto, S., Ishii, K. and Kato, R.: Inhibition of calcium uptake and catecolamine release by 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxy benzoate hydrochloride (TMB-8) in cultured bovine adrenal chromaffin cells.Biochem. Phamacol. 33, 4063 (1984).

    Article  CAS  Google Scholar 

  8. Poisner, A. M.: Direct stimulant effect of aminophilline on catecholamine release from the adrenal medulla.Biochem. Pharmacol. 22, 469 (1973).

    Article  PubMed  CAS  Google Scholar 

  9. Lim, D. Y., Lee, J. H., Kim, W. S., Lee, E. H., Kim, S. P., Lee, B. J. and Koh, S. T.: Studies on secretion of catecholamines evoked by caffeine from the isolated perfused rat adrenal glands.Arch. Pharmac. Res. 14, 55 (1991).

    Article  CAS  Google Scholar 

  10. Yamada, Y., Teraoka, H., Nakazato, Y. and Ohga, A.: Intracellular Ca2+ antagonist TMB-8 blocks catecholamine secretion evoked by caffeine and acetylcholine from perfused cat adrenal glands in the absence of extracellular Ca2+.Neurosci. Lett. 90, 338 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. Nakazato, Y., Yamada, Y., Tomita, U. and Ohga, A.: Muscarinic agonists release adrenal catecholamines by mobilizing intracellular Ca2+ Proc. Jpn. Acad. 60, 314 (1984).

    Article  CAS  Google Scholar 

  12. Nakazato, Y., Ohga, A., Oleshansky, M., Tomita, U. and Yamada, Y.: Voltage-independent catecholamines release mediated by the activation of muscarinic receptors in guinea-pig adrenal glands.Br. J. Pharmacol. 93, 101 (1988).

    PubMed  CAS  Google Scholar 

  13. Donowitz, M., Cusolito, S. and Sharp, G. W. G.: Effects of calcium and Cl transport in rabbit ileum.Am. J. Physiol. 250, G691 (1986).

    PubMed  CAS  Google Scholar 

  14. Takahara, A., Suzuki-Husaba, M., Hisa, H. and Satoh, S.: Effects of a novel Ca2+ entry blocker, CD-349, and TMB-8 on renal vasoconstriction induced by angiotensin II and vasopressin in dogs.J. Cardiovasc. Pharmacol. 16, 966 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. Malagodi, M. H. and Chiou, C. Y.: Pharmacological evaluation of a new Ca2+ antagonist, 8-(N, N-diethylamino)-octyl-3,4,6-trimethoxybenzoate hydrochloride) (TMB-8): Studies in smooth muscle.Eur. J. Pharmacol. 27, 25 (1974).

    Article  PubMed  CAS  Google Scholar 

  16. Kojima, I., Kojima, K. and Rasmussen, H.: Effects of ANG 2 and K+ on Ca2+ efflux and aldosterone production in adrenal glomerulosa cells.Am. J. Physiol. 248, E36 (1985).

    PubMed  CAS  Google Scholar 

  17. Ogawa, N. and Ono, H.: Effect of 8-(N, N-diethylamino) octyl 3,4,5-trimethoxybenzoate (TMB-8), an inhibitor of intracellular Ca2+ release. On autoregulation of renal blood flow in the dog.Naunyn. Schmiedebergs Arch. Pharmacol. 338, 293 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. Wakade, A. R.: Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland.J. Physiol. 313, 463 (1981).

    PubMed  CAS  Google Scholar 

  19. Anton, A. H. and Sayre, D. F.: A study of the factors affecting the aluminum oxide-trihydroxy indole procedure for the analysis of catecholamines.J. Pharmacol. Exp. Ther.,138, 360 (1962).

    PubMed  CAS  Google Scholar 

  20. Tallarida, R. J. and Murray R. B.: Manual of pharmacologic calculation with computer programs. 2nd ed. Springer-Verlag, New York. p. 132 (1987).

    Google Scholar 

  21. Schramm, M., Thomas, G., Towart, R. and Franckowiak, G.: Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels.Nature.303, 535 (1982).

    Article  Google Scholar 

  22. Wada, Y., Satoh, K., Taira, N.: Cardiovascular profile of Bay-k 8644, a presumed calcium channel activator in the dog. Naunyn-Schmiedebergs.Arch. Pharmacol. 328, 382 (1985).

    Article  CAS  Google Scholar 

  23. Hammer, R. and Giachetti, A.: Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization.Life Sci.31, 2991 (1982).

    Article  PubMed  CAS  Google Scholar 

  24. Peach, M. J.: Stimulation of release of adrenal catecholamine by adenosine 3,5-cycle monophosphate and theophylline in the absence of extracellular Ca2+.Pro. Natl. Aca. Sci. USA. 69, 834 (1972).

    Article  CAS  Google Scholar 

  25. Yamata, Y., Nakazato, Y. and Ohga, A.: Ouabain distinguishes between nicotinic and muscarinic receptor-mediated catecholamines secretions in perfused adrenal glands of cat.Br. J. Pharmacol. 96, 470 (1989).

    Google Scholar 

  26. Poisner, A. M.: Caffeine-induced cathecholamine secretion similarity to caffeine-induced muscle contration.Proc. Soc. Exp. Biol. Med. 142, 103 (1973).

    PubMed  CAS  Google Scholar 

  27. Morita, K., Dohi, T., Kitayama, S., Koyama, Y. and Tsujimoto, A.: Enhancement of stimulation-evoked catecholamine release from cultured bovine adrenal chromaffin cells by forskolin.J. Neurochem. 48, 243 (1987).

    Article  PubMed  CAS  Google Scholar 

  28. Morita, K., Dohi, T., Kitayama, S., Koyama, Y. and Tsujimoto, A.: Simulation-evoked Ca2+ fluxes in cultured bovine adrenal chromaffin cells are enhanced by forskolin.J. Neurochem. 48, 248 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. Baker, D. F. and Knight, D. E.: Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membrane.Nature.276, 620 (1978).

    Article  PubMed  CAS  Google Scholar 

  30. Ohashi, H., Takewaki, T. and Okada, T.: Calcium and the contractile effect of carbachol in the depolarized guinea pig taenia caecum.Jap. J. Pharmacol. 24, 601 (1974).

    Article  CAS  Google Scholar 

  31. Casteel, R. and Raemaeker, L.: The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea-pig taenia coli.J. Physiol. 294, 51 (1979).

    Google Scholar 

  32. Cheek, T. R. and Burgoyne, R. F.: Effect of activation of muscarinic receptors on intracellular free calcium and secretion in bovine adrenal chromaffin cells.Biochim. Biophys. Acta. 846, 167 (1985).

    Article  PubMed  CAS  Google Scholar 

  33. Kao, L. S. and Schneider, A. S.: Muscarinic receptors on bovine chromaffin cells mediated a rise in cytosolic calcium that is independent of extracellular calcium.J. Biol. Chem. 260, 2019 (1985).

    PubMed  CAS  Google Scholar 

  34. Kao, L. S. and Schneider, A. S.: Calcium mobilization and catecholamine secretion in adrenal chromaffin cells.J. Biol. Chem. 261, 4881 (1986).

    PubMed  CAS  Google Scholar 

  35. Harish, O. E., Kao, L. S., Raffaniello, R., Wakade, A. K. and Schneider, A. S.: Calcium dependence of muscarinic receptor-mediated catecholamine secretion from the perfused rat adrenal medulla.J. Neurochem. 48, 1730 (1987).

    Article  PubMed  CAS  Google Scholar 

  36. Wakade, A. R. and Wakade, T. D.: Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous an exogenous an exogenous acetylcholine.Neuroscience.10, 973 (1983).

    Article  PubMed  CAS  Google Scholar 

  37. Kilpatrick, D. L., Slepepis, R. J., Corcoran, J. J. and Kirshner, N.: Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells.J. Neurochem. 38, 427 (1982).

    Article  PubMed  CAS  Google Scholar 

  38. Kilpatrick, D. L., Slepetis, R. and Kirshner, N.: Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells.J. Neurochem. 36, 1245 (1981).

    Article  PubMed  CAS  Google Scholar 

  39. Knight, D. E. and Kesteven, N. T.: Evoked transient intracellular free Ca2+ changes and secretion in isolated bovine adrenal medullary cells.Proc. R. Soc. Lond. B. 218, 177 (1983).

    Article  PubMed  CAS  Google Scholar 

  40. Kojima, I., Kojima, K. and Rasmussen, H.: Mechanism of inhibitory action of TMB-8 (8-(N,N-diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride) on aldosterone secretion in adrenal glomerulosa cells.Biochem. J. 232, 87 (1985).

    PubMed  CAS  Google Scholar 

  41. Yamamoto, H., Hwang, O. and Van Breeman, C.: Bay-k 8644 differentiates between potential and receptor operated Ca2+ channels.Eur. J. Pharmacol. 102, 555 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, DY., Kim, CD. & Ahn, GW. Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch. Pharm. Res. 15, 115–125 (1992). https://doi.org/10.1007/BF02974085

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02974085

Keywords

Navigation