Skip to main content
Log in

In vivo pharmacokinetics, activation of MAPK signaling and induction of phase II/III drug metabolizing enzymes/transporters by cancer chemopreventive compound BHA in the mice

  • Articles
  • Drug Efficacy
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Phenolic antioxidant butylated hydroxyanisole (BHA) is a commonly used food preservative with broad biological activities, including protection against chemical-induced carcinogenesis, acute toxicity of chemicals, modulation of macromolecule synthesis and immune response, induction of phase II detoxifying enzymes, as well as its undesirable potential tumor-promoting activities. Understanding the molecular basis underlying these diverse biological actions of BHA is thus of great importance. Here we studied the pharmacokinetics, activation of signaling kinases and induction of phase II/III drug metabolizing enzymes/transporter gene expression by BHA in the mice. The peak plasma concentration of BHA achieved in our current study after oral administration of 200 mg/kg BHA was around 10 μM. Thisin vivo concentration might offer some insights for the manyin vitro cell culture studies on signal transduction and induction of phase II genes using similar concentrations. The oral bioavailability (F) of BHA was about 43% in the mice. In the mouse liver, BHA induced the expression of phase II genes including NQO-1, HO-1, γ-GCS, GST-pi and UGT 1A6, as well as some of the phase III transporter genes, such as MRP1 and Slco1b2. In addition, BHA activated distinct mitogen-activated protein kinases (MAPKs), c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), as well as p38, suggesting that the MAPK pathways may play an important role in early signaling events leading to the regulation of gene expression including phase II drug metabolizing and some phase III drug transporter genes. This is the first study to demonstrate thein vivo pharmacokinetics of BHA, thein vivo activation of MAPK signaling proteins, as well as thein vivo induction of Phase II/III drug metabolizing enzymes/transporters in the mouse livers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Babich, H. and Borenfreund E., Cytotoxic effects of food additives and pharmaceuticals on cells in culture as determined with the neutral red assay.J. Pharm. Sci., 79, 592–594 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Benson A. M., Batzinger R. P., Ou, S. Y., Bueding, E., Cha, Y. N., and Talalay, P., Elevation of hepatic glutathione Stransferase activities and protection against mutagenic metabolites of benzo(a)pyrene by dietary antioxidants.Cancer Res., 38, 4486–4495 (1978).

    PubMed  CAS  Google Scholar 

  • Bloom, D. A., and Jaiswal, A. K., Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD (P)H:quinone oxidoreductase-1 gene expression.J. Biol. Chem., 278, 44675–44682 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Brekke O. L., Shalaby, M. R., Sundan, A., Espevik, T., and Bjerve K. S., Butylated hydroxyanisole specifically inhibits tumor necrosis factor-induced cytotoxicity and growth enhancement.Cytokine, 4, 269–280 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Cano, E., Hazzalin, C. A., and Mahadevan, L. C., Anisomycin-activated protein kinases p45 and p55 but not mitogen-activated protein kinases ERK-1 and-2 are implicated in the induction of c-fos and c-jun.Mol. Cell. Biol., 14, 7352–7362 (1994).

    PubMed  CAS  Google Scholar 

  • Cha, Y. N., Martz, F., and Bueding, E., Enhancement of liver microsome epoxide hydratase activity in rodents by treatment with 2(3)-tert-butyl-4-hydroxyanisole.Cancer Res., 38, 4496–4498 (1978).

    PubMed  CAS  Google Scholar 

  • Chen, C., Pung, D., Leong, V., Hebbar, V., Shen, G., Nair, S., Li, W., and Kong, A. N., Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: effect of chemical structure and stress signals.Free Radic. Biol. Med., 37, 1578–1590 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y. R., Wang, X., Templeton, D., Davis, R. J., and Tan, T. H., The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation.J. Biol. Chem., 271, 31929–31936 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Clayson, D. B., Iverson, F., Nera, E. A., and Lok, E., The significance of induced forestomach tumors.Annu. Rev. Pharmacol. Toxicol., 30, 441–463 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Cobb, M. H., and Goldsmith, E. J., How MAP kinases are regulated.J. Biol. Chem., 270, 14843–14846 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Cripe, L. D., Gelfanov, V. M., Smith, E. A., Spigel, D. R., Phillips, C. A., Gabig, T. G., Jung, S. H., Fyffe, J., Hartman, A. D., Kneebone, P., Mercola, D., Burgess, G. S., and Boswell, H. S., Role for c-jun N-terminal kinase in treatment-refractory acute myeloid leukemia (AML): signaling to multidrug-efflux and hyperproliferation.Leukemia, 16, 799–812 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Cullinan, S. B., Gordan, J. D., Jin, J., Harper, J. W., and Diehl, J. A., The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap 1 ligase.Mol. Cell Biol., 24, 8477–8486 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Cummings, S. W., and Prough, R. A., Butylated hydroxyanisolestimulated NADPH oxidase activity in rat liver microsomal fractions.J. Biol. Chem., 258, 12315–12319 (1983).

    PubMed  CAS  Google Scholar 

  • Della Corte, L., Bianchi, L., Valoti, M., and Sgaragli, G., Distribution and peroxidative oxidation of 2-t-butyl-4-methoxyphenol in rat tissues after a single intraperitoneal dose.J. Biochem. Toxicol., 4, 147–150 (1989).

    Article  PubMed  Google Scholar 

  • Favreau, L. V., and Pickett, C. B., Transcriptional regulation of the rat NAD(P)H: quinone reductase gene. Identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants.J. Biol. Chem., 266, 4556–4561 (1991).

    PubMed  CAS  Google Scholar 

  • Friling, R. S., Bensimon, A., Tichauer, Y., and Daniel, V., Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element.Proc. Natl. Acad. Sci. U.S.A., 87, 6258–6262 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Guan, J., Chen, X. P., Zhu, H., Luo S. F., Cao, B., and Ding, L., Involvement of extracellular signal-regulated kinase/mitogen-activated protein kinase pathway in multidrug resistance induced by HBx in hepatoma cell line.World J. Gastroenterol., 10, 3522–3527 (2004).

    PubMed  CAS  Google Scholar 

  • Guyton, K. Z., Liu, Y., Gorospe, M., Xu, Q., and Holbrook, N. J., Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury.J. Biol. Chem., 271, 4138–4142 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, T., Catanzaro, A., and Rao, S. P., Apoptosis of human monocytes and macrophages by Mycobacterium avium sonicate.Infect. Immun., 65, 5262–5271 (1997).

    PubMed  CAS  Google Scholar 

  • Horvathova, E., Slamenova, D., Bonatti, S. and Abbondandolo, A., Reduction of genotoxic effects of MNNG by butylated hydroxyanisole.Neoplasma, 46, 356–362 (1999).

    PubMed  CAS  Google Scholar 

  • Ichijo, H., From receptors to stress-activated MAP kinases.Oncogene, 18, 6087–6093 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ito, N., Fukushima, S., Hagiwara, A., Shibata, M., and Ogiso, T., Carcinogenicity of butylated hydroxyanisole in F344 rats.J. Natl. Cancer. Inst., 70, 343–352 (1983a).

    PubMed  CAS  Google Scholar 

  • Ito, N., Fukushima, S., Imaida, K., Sakata, T., and Masui, T., Induction of papilloma in the forestomach of hamsters by butylated hydroxyanisole.Gann., 74, 459–461 (1983b).

    PubMed  CAS  Google Scholar 

  • Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto M., and Nabeshima, Y., An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements.Biochem. Biophys. Res. Commun., 236, 313–322 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Iverson, F., Truelove, J., Nera, E., Wong, J., Lok, E., and Clayson, D. B., An 85-day study of butylated hydroxyanisole in the cynomolgus monkey.Cancer. Lett., 26, 43–50 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Kahl, R., Synthetic antioxidants: biochemical actions and interference with radiation, toxic compounds chemical mutagens and chemical carcinogens.Toxicology, 33, 185–228 (1984).

    Article  PubMed  CAS  Google Scholar 

  • King, M. M., and McCay, P. B., Modulation of tumor incidence and possible mechanisms of inhibition of mammary carcinogenesis by dietary antioxidants.Cancer. Res., 43, 2485s-2490s (1983).

    PubMed  CAS  Google Scholar 

  • Kirlin, W. G., Cai, J., DeLong, M. J., Patten, E. J., and Jones, D. P., Dietary compounds that induce cancer preventive phase 2 enzymes activate apoptosis at comparable doses in HT29 colon carcinoma cells.J. Nutr., 129, 1827–1835 (1999).

    PubMed  CAS  Google Scholar 

  • Kong, A. N., Owuor, E., Yu, R., Hebbar, V., Chen, C., Hu, R., and Mandlekar, S., Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE).Drug. Metab. Rev., 33, 255–271 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kraft, A. D., Johnson, D. A., and Johnson, J. A., Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult.J. Neurosci., 24, 1101–1112 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., Avruch, J., and Woodgett, J. R., The stress-activated protein kinase subfamily of c-Jun kinases.Nature, 369, 156–160 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Lam, L. K., Fladmoe, A. V., Hochalter, J. B., and Wattenberg, L. W., Short time interval effects of butylated hydroxyanisole on the metabolism of benzo(a)pyrene.Cancer. Res., 40, 2824–2828 (1980).

    PubMed  CAS  Google Scholar 

  • Li, Y. and Jaiswal, A. K., Regulation of human NAD(P)H:quinone oxidoreductase gene. Role of AP1 binding site contained within human antioxidant response element.J. Biol. Chem., 267, 15097–15104 (1992).

    PubMed  CAS  Google Scholar 

  • Liu, Y., Guyton, K. Z., Gorospe, M., Xu, Q., Lee, J. C., and Holbrook, N. J., Differential activation of ERK, JNK/SAPK and P38/CSBP/RK map kinase family members during the cellular response to arsenite.Free Radic. Biol. Med., 21, 771–781 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Logan, S. K., Falasca, M., Hu, P., and Schlessinger, J., Phosphatidylinositol 3-kinase mediates epidermal growth factor-induced activation of the c-Jun N-terminal kinase signaling pathway.Mol. Cell Biol., 17, 5784–5790 (1997).

    PubMed  CAS  Google Scholar 

  • Marshall, C. J., MAP kinase kinase kinase, MAP kinase kinase and MAP kinase.Curr. Opin. Genet Dev., 4, 82–89 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Moldeus, P., Dock, L., Cha, Y. N., Berggren, M., and Jernstrom, B., Elevation of conjugation capacity in isolated hepatocytes from BHA-treated mice.Biochem. Pharmacol., 31, 1907–1910 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Monroe, D. H. and Eaton, D. L., Comparative effects of butylated hydroxyanisole on hepatic in vivo DNA binding and in vitro biotransformation of aflatoxin B1 in the rat and mouse.Toxicol Appl Pharmacol, 90, 401–409 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Nera, E. A., Iverson, F., Lok, E., Armstrong, C. L., Karpinski, K., and Clayson, D. B., A carcinogenesis reversibility study of the effects of butylated hydroxyanisole on the forestomach and urinary bladder in male Fischer 344 rats.Toxicology, 53, 251–268 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Ohmichi, M., Sawada, T., Kanda, Y., Koike, K., Hirota, K., Miyake, A., and Saltiel, A. R., Thyrotropin-releasing hormone stimulates MAP kinase activity in GH3 cells by divergent pathways. Evidence of a role for early tyrosine phosphorylation.J. Biol. Chem., 269, 3783–3788 (1994).

    PubMed  CAS  Google Scholar 

  • Peters, M. M., Rivera, M. I., Jones, T. W., Monks, T. J., and Lau, S. S., Glutathione conjugates of tert-butyl-hydroquinone, a metabolite of the urinary tract tumor promoter 3-tert-butyl-hydroxyanisole, are toxic to kidney and bladder.Cancer. Res., 56, 1006–1011 (1996).

    PubMed  CAS  Google Scholar 

  • Prochaska, H. J., De Long, M. J., and Talalay, P., On the mechanisms of induction of cancer-protective enzymes: a unifying proposal.Proc. Natl. Acad. Sci U.S.A., 82, 8232–8236 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Ratan, R. R., Murphy, T. H., and Baraban, J. M., Oxidative stress induces apoptosis in embryonic cortical neurons.J. Neurochem., 62, 376–379 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Reddy, B. S. and Maeura, Y., Dose-response studies of the effect of dietary butylated hydroxyanisole on colon carcinogenesis induced by methylazoxymethanol acetate in female CF1 mice.J. Natl. Cancer. Inst., 72, 1181–1187 (1984).

    PubMed  CAS  Google Scholar 

  • Rehwoldt, R., Tracking the use of antioxidants through industry surveys.Food Chem. Toxicol., 24, 1039–1041 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Rushmore, T. H. and Pickett, C. B., Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants.J. Biol. Chem., 265, 14648–14653 (1990).

    PubMed  CAS  Google Scholar 

  • Rushmore, T. H., Morton, M. R., and Pickett, C. B., The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity.J. Biol. Chem., 266, 11632–11639 (1991).

    PubMed  CAS  Google Scholar 

  • Sakai, A., Miyata, N., and Takahashi, A., Initiating activity of 3-tert-butyl-4-hydroxyanisole (3-BHA) and its metabolites in two-stage transformation of BALB/3T3 cells.Carcinogenesis, 11, 1985–1988 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Shen, G., Hebbar, V., Nair, S., Xu, C., Li, W., Lin, W., Keum, Y. S., Han, J., Gallo, M. A., and Kong, A. N., Regulation of Nrf2 transactivation domain activity. The differential effects of mitogen-activated protein kinase cascades and synergistic stimulatory effect of Raf and CREB-binding protein.J. Biol. Chem., 279, 23052–23060 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Sparnins, V. L., Chuan, J., and Wattenberg, L. W., Enhancement of glutathione S-transferase activity of the esophagus by phenols, lactones, and benzyl isothiocyanate.Cancer. Res., 42, 1205–1207 (1982a).

    PubMed  CAS  Google Scholar 

  • Spamins, V. L., Venegas, P. L., and Wattenberg, L. W., Glutathione S-transferase activity: enhancement by compounds inhibiting chemical carcinogenesis and by dietary constituents.J. Natl. Cancer. Inst., 68, 493–496 (1982b).

    Google Scholar 

  • Talalay, P., Batzinger, R. P., Benson, A. M., Bueding, E., and Cha, Y. N., Biochemical studies on the mechanisms by which dietary antioxidants suppress mutagenic activity.Adv. Enzyme. Regul., 17, 23–36 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M. J., Sharma, R. P., and Bourcier, D. R., Tissue distribution and pharmacokinetics of 3H-butylated hydroxyanisole in female mice.Agents Actions, 15, 454–458 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Venugopal, R. and Jaiswal, A. K., Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene.Proc. Natl. Acad. Sci. U.S.A., 93, 14960–14965 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Vercammen, D., Beyaert, R., Denecker, G., Goossens, V., Van Loo, G., Declercq, W., Grooten, J., Fiers, W., and Vandenabeele, P., Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor.J. Exp. Med., 187, 1477–1485 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Verhagen, H., Beckers, H. H., Comuth, P. A., Maas, L. M., ten Hoor, F., Henderson, P. T., and Kleinjans, J. C., Disposition of single oral doses of butylated hydroxytoluene in man and rat.Food Chem. Toxicol., 27, 765–772 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Vojtek, A. B. and Der, C. J., Increasing complexity of the Ras signaling pathway.J. Biol. Chem., 273, 19925–19928 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Vora, J., Wu, Z., Montague, M., Penn, M., and Erow, K., Influence of dosing vehicles on the preclinical pharmacokinetics of phenolic antioxidants.Res. Commun. Mol. Pathol. Pharmacol., 104, 93–106 (1999).

    PubMed  CAS  Google Scholar 

  • Wattenberg, L. W., Inhibition of chemical carcinogen-induced pulmonary neoplasia by butylated hydroxyanisole.J. Natl. Cancer. Inst., 50, 1541–1544 (1973).

    PubMed  CAS  Google Scholar 

  • Wattenberg, L. W., Inhibition of neoplasia by minor dietary constituents.Cancer. Res., 43, 2448s-2453s (1983).

    PubMed  CAS  Google Scholar 

  • Wattenberg, L. W., Chemoprevention of cancer.Cancer. Res., 45, 1–8 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Wood, K. W., Sarnecki, C., Roberts, T. M., and Blenis, J., ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK.Cell, 68, 1041–1050 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., Rossomando, A. J., Her, J. H., Del Vecchio, R., Weber, M. J., and Sturgill, T. W., Autophosphorylation in vitro of recombinant 42-kilodalton mitogen-activated protein kinase on tyrosine.Proc. Natl. Acad. Sci. U.S.A., 88, 9508–9512 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Wurtzen, G. and Olsen, P., BHA study in pigs.Food Chem. Toxicol., 24, 1229–1233 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Yu, R., Tan, T. H., and Kong, A. T., Butylated hydroxyanisole and its metabolite tert-butylhydroquinone differentially regulate mitogen-activated protein kinases. The role of oxidative stress in the activation of mitogen-activated protein kinases by phenolic antioxidants.J. Biol. Chem., 272, 28962–28970 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Yu, R., Mandlekar, S., and Kong, A. T., Molecular mechanisms of butylated hydroxylanisole-induced toxicity: induction of apoptosis through direct release of cytochrome c.Mol. Pharmacol., 58, 431–437 (2000).

    PubMed  CAS  Google Scholar 

  • Yu, R., Lei, W., Mandlekar, S., Weber, M. J., Der, C. J., Wu, J., and Kong, A. T., Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals.J. Biol. Chem., 274, 27545–27552 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ah-Ng Tony Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, R., Shen, G., Yerramilli, U.R. et al. In vivo pharmacokinetics, activation of MAPK signaling and induction of phase II/III drug metabolizing enzymes/transporters by cancer chemopreventive compound BHA in the mice. Arch Pharm Res 29, 911–920 (2006). https://doi.org/10.1007/BF02973914

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02973914

Key words

Navigation