Skip to main content
Log in

Wood fiber length as related to position in tree and growth

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  • Amos, G. L., I. J. W. Bisset andH. E. Dadswell. 1950. Wood structure in relation to growth inEucalyptus gigantea Hook F. Aust Jour. Sci. Res.3B: 393–413.

    Google Scholar 

  • Anderson, Eric A. 1951. Tracheid length variation in conifers as related to distance from pith. Jour. For.49: 38–42.

    Google Scholar 

  • Australia Division of Forest Products. 1949. Cell wall and fibre studies. Growth studies. Sapwood and heartwood. Rep. Div. For. Prod. Aust.1948-1949: 6–10. [Not seen. Abstracted in For. Abs. 11: 1852.]

    Google Scholar 

  • Bailey, I. W., andH. B. Shepard. 1915. Sanio’s laws for the variation in size of coniferous tracheids. Bot. Gaz.60: 66–71.

    Article  Google Scholar 

  • — andW. W. Tupper. 1919. Size variation in tracheary cells. Proc. Am. Acad. Arts & Sci.54: 149–204.

    Google Scholar 

  • —. 1920. The cambium and its derivative tissues. II. Size variations of cambial initials in gymnosperms and angiosperms. Am. Jour. Bot.7: 355–367.

    Article  Google Scholar 

  • — andAnna F. Faull. 1934. The cambium and its derivative tissues. IX. Structural variability in the redwood,Sequoia sempervirens, and its significance in the identification of fossil woods. Jour. Arn. Arb.15: 233–254.

    CAS  Google Scholar 

  • Bannan, M. W. 1941. Wood structure ofThuja occidentalis. Bot. Gaz.103: 295–309.

    Article  Google Scholar 

  • —. 1942. Wood structure of the native Ontario species ofJuniperus. Am. Jour. Bot.29: 245–252.

    Article  Google Scholar 

  • —. 1944. Wood structure ofLibocedrus decurrens. Am. Jour. Bot.31: 346–351.

    Article  Google Scholar 

  • Baranetzky, J. 1901. Ueber die Ursachen, welche die Richtung der Aeste der Baum- und Straucharten bedingen. Flora89: 138–239.

    Google Scholar 

  • Berkley, E. E. 1934. Certain physical and structural properties of three species of southern yellow pine correlated with the compression strength of their wood. Ann. Mo. Bot. Gard.21: 241–338.

    Article  Google Scholar 

  • Bethel, J. S. 1941. The effect of position within the bole upon fiber length of loblolly pine (Pinus Taeda L.). Jour. Four.39: 30–33.

    Google Scholar 

  • Bisset, I. J. W. 1949. I. Bibliography of references on the variations of tracheid and fiber lengths and their distributions in angiosperms and gymnosperms. II. Summarized data on the variation of fibre and tracheid lengths and their distribution in angiosperms and gymnosperms. Bibliogr. Ser. Div. For. Prod. Aust.37. 5 + 5 pp. [Not seen].

  • — andH. E. Dadswell. 1949. The variation of fibre length within one tree ofEucalyptus regnans F. v. M. Aust. For.13: 86–96.

    Google Scholar 

  • —,— andG. L. Amos. 1950. Changes in fibre-length within one growth ring of certain angiosperms. Nature [London]165: 348–349.

    Article  Google Scholar 

  • — and —. 1950. The variation in cell length within one growth ring in certain angiosperms and gymnosperms. Aust. For.14: 17–29.

    Google Scholar 

  • —,—, andA. B. Wardrop. 1951. Factors influencing tracheid length in conifers stems. Aust. For.15: 17–30.

    Google Scholar 

  • Bosshard, H. H. 1951. Variabilität der Elemente des Eschenholzes in Funktion von der Kambiumtätigkeit. Schweiz. Z. Forstw.102: 648–665.

    Google Scholar 

  • Chalk, L. 1930. Tracheid length, with special reference to Sitka spruce (Picea sitchensis Carr.). Forestry4: 7–14.

    Google Scholar 

  • Cortes, R. T., andP. Hambananda. 1947. Fiber length of anilau (Columbia serratifolia), hinlaumo (Mallotus ricinioides) and kupang (Parkia javanica). Phil. Jour. For.5(1): 50–70.

    Google Scholar 

  • Fegel, A. C. 1941. Comparative anatomy and varying physical properties of trunk, branch and root wood in certain northeastern trees. N. Y. State Coll. For., Tech. Bul.55. 20 pp.

  • Garland, H. 1939. A microscopic study of coniferous wood in relation to its strength properties. Ann. Mo. Bot. Gard.26: 1–94.

    Article  Google Scholar 

  • Gerry, Eloise. 1915. Fiber measurement studies; length variations: Where they occur and their relation to the strength and uses of wood. Science41(1048): 179.

    Google Scholar 

  • —. 1916. A comparison of tracheid dimensions in longleaf pine and Douglas fir, with data on the strength and length, mean diameter and thickness of wall of the tracheids. Science43(1106): 360.

    Article  Google Scholar 

  • Graff, J. H., andR. W. Miller. 1939. Fiber dimensions. Paper Trade Jour.109(6): 31–37.

    CAS  Google Scholar 

  • Hale, J. D. 1924. Effect of rate of growth on density and fibre characteristics of pulpwood. Pulp & Paper Mag. Canada43. March 6, 1924.

    Google Scholar 

  • - andFensom, K. G. 1931. The rate of growth and density of the wood of white spruce. Canada Dept. Int. For. Serv., Circ. 30. 16 pp.

  • -. 1935. The structure of wood.In: T. A. McElhanney et al: Canadian Woods. Their properties and uses. Pp. 101–132.

  • Harlow, W. M. 1927. The effect of site on the structure and growth of white cedar,Thuja occidentalis L. Ecology8: 453–470.

    Article  Google Scholar 

  • Hata, K. 1949. Studies on the pulp of Akamatsu (Pinus densiflora Sieb. et. Zucc). I. On the length, diameter and length-diameter ratio of tracheids in Akamatsu wood. Kawaga-Ken Agr. Coll., Tech. Bull.1: 1–35. [Not seen. Abstracted in For. Abs. 14: 629].

    Google Scholar 

  • Kribs, D. A. 1928. Length of tracheids in jack pine in relation to their position in the vertical and horizontal axis of the tree. Minn. Agr. Exp. Sta., Bul.54. 14 pp.

  • Lee, H. N. 1917. Fast-growing white spruce in Quebec. Canad. For. Jour.13: 1439–1440.

    Google Scholar 

  • -. 1922. The manufacture of pulp and paper. Vol. 3, Sect. 1. Properties of pulpwood, pp. 1–39. 1922.

  • — andE. M. Smith. 1916. Douglas fir fiber with special reference to length. For. Quart.14(4): 671–695.

    Google Scholar 

  • Liang, Shih-Chen. 1948. Variation in tracheid length from the pith outwards in the wood of the genusLarix with a note on variation in other anatomical features. Forestry22: 222–237.

    Google Scholar 

  • MacMillan, W. B. 1925. A study in comparative lengths of tracheids of red spruce grown under free and suppressed conditions. Jour. For.23: 34–42.

    Google Scholar 

  • McElhanney, T. A. 1935. Canadian woods. Their properties and uses. Chap. II. Commercial timbers of Canada, pp. 28–100.

  • Mell, C. D. 1910. Determination of quality of locality by fiber length of wood. For. Quart.8: 419–422.

    Google Scholar 

  • Misra, P. 1939. Observations on spiral grain in the wood ofPinus longifolia. Forestry13: 118–133.

    Google Scholar 

  • Myer, J. E. 1930. The structure and strength of four North American Woods as influenced by range, habitat, and position in the tree. N. Y. State Col. For., Tech. Publ. 31. 39 pp.

  • Pritchard, R. P., andI. W. Bailey. 1916. The significance of certain variations in the anatomical structure of wood. For. Quart.14(4): 662–672.

    Google Scholar 

  • Sanio, K. 1872. Ueber die Grösse der Holzzellen bei der gemeinen Kiefer (Pinus sylvestris). Jahrb. Wiss. Bot.8: 401–420.

    Google Scholar 

  • Shepard, H. B., andI. W. Bailey. 1914. Some observations on the variation in length of coniferous fibers. Proc. Soc. Am. For.9: 522–525.

    Google Scholar 

  • Shimaji, K. 1950. The relation between fibre length of some dicotyledonous woods and tension on the cambium. Jour. Jap. For. Soc.32: 371–372. [Not seen. Abstracted in For. Abs. 14: 1495].

    Google Scholar 

  • Siriban, F. L. 1939. Fiber measurement studies of anabiong. Phil. Jour. For.2: 301–313.

    Google Scholar 

  • Spurr, S. H., andW. Y. Hsiung. 1954. Growth rate and specific gravity in conifers. Jour. For.52: 191–200.

    Google Scholar 

  • — andM. Hyvärinen. 1954. Compression wood in conifers as a morphogenetic phenomenon. Bot. Rev.20: 551–560.

    Article  Google Scholar 

  • Vasiljević, S. 1952. O duzini mehaničkih elemtata u granicama prstena prirasta. [Length of mechanical elements within the growth ring]. Glasn. šum. Fak., Beograd5: 257–264. [Not seen. Abstracted in For. Abs. 14: 2609].

    Google Scholar 

  • Wardrop, A. B. 1948. The influence of pressure on the cell wall organisation of conifer tracheids. Proc. Leeds Phil. Lit. Soc.5: 128–135.

    Google Scholar 

  • — andH. E. Dadswell. 1950. The nature of reaction wood. II. The cell wall organization of compression wood tracheids. Aust. Jour. Sci. Res.B. 3: 1–13.

    Google Scholar 

  • — and —. 1952. The nature of reaction wood. III. Cell division and cell-wall formation in conifer stems. Aust. Jour. Sci. Res.B. 5: 385–398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spurr, S.H., Hyvärinen, M.J. Wood fiber length as related to position in tree and growth. Bot. Rev 20, 561–575 (1954). https://doi.org/10.1007/BF02958804

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02958804

Keywords

Navigation