Skip to main content
Log in

Growth characteristics of ultrahigh-density microalgal cultures

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The physiological characteristics of cultures of very high cell mass (e.g. 10 g cell mass/L), termed “ultrahigh cell density cultures” is reviewed. A close relationship was found between the length of the optical path (OP) in flat-plate reactors and the optimal cell density of the culture as well as its areal (g m−2 day−1) productivity. Cell-growth inhibition (GI) unfolds, as culture density surpasses a certain threshold. If it is constantly relieved, a 1.0 cm OP reactor could produceca. 50% more than reactors with longer OP,e.g. 5 or 10 cm. This unique effect, discovered by Hu et al. [3], is explained in terms of the relationships between the frequency of the light-dark cycle (L-D cycle), cells undergo in their travel between the light and dark volumes in the reactor, and the turnover time of the photosynthetic center (PC). In long OP reactors (5 cm and above) the L-D cycle time may be orders of magnitude longer than the PC turnover time, resulting in a light regime in which the cells are exposed along the L-D cycle, to long, wasteful dark periods. In contrast, in reactors with an OP ofca. 1.0 cm, the L-D cycle frequency approaches the PC turnover time resulting in a significant reduction of the wasteful dark exposure time, thereby inducing a surge in photosynthetic efficiency. Presently, the major difficulty in mass cultivation of ultrahigh-density culture (UHDC) concerns cell grwoth inhibition in the culture, the exact nature of which is awaiting detailed investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Javanmardian, M. and B. O. Palsson (1991) High-density photoautrotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system.Biotechnol. Bioeng. 38: 1182–1189.

    Article  CAS  Google Scholar 

  2. Hu, Q., Y. Zarmi, and A. Richmond (1998) Combined effects of light intensity, light-path, and culture density on output rate ofSpirulina platensis (Cyanobacteria).Eur. J. Phycol. 33: 165–171

    Article  Google Scholar 

  3. Hu, Q., H. Guterman, and A. Richmond (1996) A flat modular photobioreactor (FIMP) for outdoor mass cultivation of photoautotrophs.Biotechnol. Bioeng. 51: 51–60.

    Article  CAS  Google Scholar 

  4. Richmond, A., C-W. Zhang, and Y. Zarmi (2003) Efficient use of strong light for high photosynthetic productivity: Interrelationships between the optical path, the optimal population density and cell-growth inhibition. In:Biomolecular Engineering, Special issue of the Conference of the European Society for Marine Biotechnology “Marine Biotechnology: Basics and applications”. 20: 229–236.

  5. Janssen, M., J. Tramper, L. R. Mur, and R. H. Wijffels (2003) Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects.Biotechnol. Bioeng. 81: 193–210.

    Article  CAS  Google Scholar 

  6. Dubinsky, Z., P. G. Falkowsky, and K. Wyman (1986) Light harvesting and utilization by phytoplankton.Plant Cell Physiol. 27: 1335–1349.

    CAS  Google Scholar 

  7. Dubinsky, Z. (1992) The functional and optical absorption cross-sections of phytoplankton photosynthesis. pp. 31. In:Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York, USA.

    Google Scholar 

  8. Zarmi, Y: (2003) Personal communication.

  9. Hu, O., H. Guterman, and A. Richmond (1996b) Physiological characteristics ofSpirulina platensis cultured in ultra-high cell densities.J. Phycol. 32: 1066–1073

    Article  Google Scholar 

  10. Sukenik, A., R. S. Levy, Y. Levy, P. G. Falkowsky, and Z. Dubinsky (1991) Optimizing algal biomass production in an outdoor pond: A simulation model.J. Appl. Phycol. 3: 191–201.

    Article  Google Scholar 

  11. Richmond, A. (2003)Handbook of Microalgae Culture: biotechnology and Applied Phycology. p. 575. Blackwell Books, Oxford, UK.

    Chapter  Google Scholar 

  12. Vonshak, A. and R. Guy (1992) Photoadaptation, photoinhibition and productivity in the blue-green alga.Spirulina platensis grown outdoors.Plant Cell Environ. 15: 613–616.

    Article  Google Scholar 

  13. Torzillo, G., A. J. Komend, J. Kopecky, C. Faraloni, and J. Masojidek (2003) Photoinhibitory stress induced by high oxygen and low temperature in outdoor cultures ofArthrospira platensis grown in closed photobioreactors. p. 31.Abstracts of Third European Phycological Congress. July 21–26. Belfast, Ireland.

  14. Märkl, H. (1980) Modeling of algal production systems. In: G. Shelef, and C. J. Soeder (eds.),Algal Biomass. Elsevier/North-Holland, Amsterdam, The Netherlands.

    Google Scholar 

  15. Richmond, A. and J. U. Grobbelaar (1986) Factors affecting the output rate ofSpirulina platensis with reference to mass cultivation.Biomass 10: 253–264.

    Article  Google Scholar 

  16. Barbosa, M. J. (2003)Microalgal Photobioreactors: Scaleup and Optimization. Ph.D. Thesis. Wageningen University, Wageningen, The Netherlands.

    Google Scholar 

  17. Barbosa, M. J., M. Albrecht, and R. H. Wijffels (2003) Hydrodynamic stress and lethal events in sparged microalgae cultures.Biotechnol. Bioeng. 83: 112–120.

    Article  CAS  Google Scholar 

  18. Miron, A. S., A. C. Gomez, F. G. Camacho, E. M. Grima, and M. Y. Chisti (1999) Comparative evaluation of compact photobioreactors for large-scale mono-culture of microalgae.J. Biotechnol. 70: 249–256.

    Article  Google Scholar 

  19. Camacho, F. G., A. C. Gomez, T. M. Sobcruk, and E. M. Grima (2000) Effects of mechanical and hydrodynamic stress in agitated, sparged cultures ofPorphyridium cruentum.Proc. Biochem. 35: 1045–1050.

    Article  CAS  Google Scholar 

  20. Pratt, R. (1942) Studies onChlorella vulgaris: V. Some of the properties of the growth inhibitors formed byChlorella cells.Amer. J. Bot. 29: 142–148.

    Article  CAS  Google Scholar 

  21. Leving, T. (1945) Some culture experiments with marine plankton diatoms.Med. Oceanogr. Inst. Gotenborg 3: 12.

    Google Scholar 

  22. Von Dennffer, D. (1948) Übereinen Wachstum-Hemmstoff in älternden Diatomeenkulturen.Biol. Zentralbl. 67: 7–13.

    Google Scholar 

  23. Lefevre, M. (1964) Extracellular products of algae. pp 337–367. In: D. F. Jackson (ed.),Algae and Man. Plenum Press, New York, USA.

    Google Scholar 

  24. Fogg, G. E. (1971) Extracellular products of algae in fresh water.Arch. Hydrobiol. 5: 1–25.

    Google Scholar 

  25. Harris, D. O. (1975) Antibiotics production by the green alga,Pandorina morum. pp. 106–111. In: L. Brezonik and J. L. Fox (eds.),Water Quality Management through Biological Control. University of Florida, Gainesville, USA.

    Google Scholar 

  26. Keeting, K. I. (1978) Blue-green algal inhibition of diatom growth: Transition from mesotrophic to eutrophic community structure.Science 199: 971–973.

    Article  Google Scholar 

  27. Pratt, R. and J. Fong (1940) Influence of the size of inoculum on the growth ofChlorella vulgaris in freshly prepared culture medium.Amer. J. Bot. 27: 52–56.

    Article  CAS  Google Scholar 

  28. Curl, H. and G. C. McLeod (1961) The physiological ecology of a marine diatomSkeletonema costatum. (Grev.) Cleve. J. Mar. Res. 19: 70–88.

    Google Scholar 

  29. McCracken, M. D., R. E. Middaugh, and R. S. Middaugh (1980) A chemical characterization on an algal inhibitor obtained fromChlamydomonas.Hydrobiol. 70: 271–276

    Article  CAS  Google Scholar 

  30. Imada, N., K. Kobayashi, K. Tahara, and Y. Oshima (1991) Production of an autoinhibitor bySkeletonema costatum and its effect on the growth of other phytoplankton.Nippon Suisan Gakkaishi 57: 2285–2290.

    CAS  Google Scholar 

  31. Imada, N., K. Kobayashi, K. Isomura, H. Saito, S. Kimura, K. Tahara, and Y. Oshima (1992) Isolation and identification of an autoinhibitor produced bySkeletonema costatum.Nippon Suisan Gakkaishi 58: 1687–1692.

    Google Scholar 

  32. Mandalam, R. K. and B. O. Palsson (1995)Chlorella vulgaris (Chlorellaceae) does not secrete autoinhibitors at high cell densities.Amer. J. Bot. 82: 995–963.

    Article  Google Scholar 

  33. Mandalam, R. K. and B. O. Palsson (1998) Elemental balancing of biomass and medium composition enhances grwoth capacity in high-densityChlorella vulgaris cultures.Biotechnol. Bioeng. 59: 605–611.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Richmond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richmond, A. Growth characteristics of ultrahigh-density microalgal cultures. Biotechnol. Bioprocess Eng. 8, 349–353 (2003). https://doi.org/10.1007/BF02949278

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02949278

Keywords

Navigation