Skip to main content
Log in

Direct fermentation of potato starch in wastewater to lactic acid byRhizopus oryzae

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The fungal species ofRhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/L at pH 6.0 and 30°C was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%–85.5% associated with 1.5–2.0 g/L fungal biomass produced in 36 h of fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Datta, R., S. P. Tsai, P. Bonsignor, S. Moon, and J. Frank (1995) Technological and economic potential of poly (lactic acid) and lactic acid derivatives.FEMS Microbiol. Rev. 16: 221–231.

    Article  CAS  Google Scholar 

  2. Hofvendahl, K., C. Akerberg, and G. Zacchi (1999) Simultaneous enzymatic wheat starch saccharification and fermentation to lactic acid byLactococcus lactis Appl. Microbiol. Biotechnol. 52: 163–169.

    Article  CAS  Google Scholar 

  3. Khalaf, S. A. (2001) Lactic acid production by interspecific hybrids ofRhizopus strains from potato processing peel waste.Egyptian J. Microbiol. 36: 89–102.

    CAS  Google Scholar 

  4. Yin, P., N. Nishina, Y. Kosakai, K. Yahiro, Y. Park, and M. Okabe (1997) Enhanced production of L (+)-lactic acid from corn starch in a culture ofRhizopus oryzae using an air-lift bioreactor.J. Ferment. Bioeng. 84: 249–253.

    Article  CAS  Google Scholar 

  5. Akerberg, C., K. Hofvendahl, G. Zacchi, and B. Hahn-Hagerdal (1998) Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production byLactococeus lactis ssp.lactis ATCC 19435 in whole-wheat flour.Appl. Microbiol. Biotechnol. 49: 682–690.

    Article  CAS  Google Scholar 

  6. Tsao, G. T., N. J. Cao J. Du, and C. S. Gong (1999) Production of multifunctional organic acids from renewable resources.Adv. Biochem. Eng. Biotechnol. 65: 245–277.

    Google Scholar 

  7. Richter, K., and C. Berthold (1998) Biotechnological conversion of sugar and starchy crops into lactic acid.J. Agri-Eng. Res. 71: 181–191.

    Article  Google Scholar 

  8. Aristidous, A., and M. Penttila (2000) Metabolic engineering applications to renewable resource utilization.Curr. Opin. Biotechnol. 11: 187–198.

    Article  Google Scholar 

  9. Cheng, P., R. E. Mueller, S. Jaeger, R. Bajpai, and E. L. Iannotti (1991) Lactic acid production from enzymethinned corn starch usingLactobacillus amylovorus J. Ind. Microbiol. 7: 27–34.

    Article  CAS  Google Scholar 

  10. Gonzalez-Vara, A., D. Pinelli, M. Rossi, D. Fajner, F. Magelli, and D. Matteuzzi (1996) Production of L(+) and D(−) lactic acid isomers byLactobacillus casei subsp.casei DSM 20011 andLactobacillus coryniformis subsp.torquens DSM 20004 in continuous fermentationJ. Ferment. Bioeng. 81: 548–552.

    Article  Google Scholar 

  11. Vishnu, C., G. Seenayya, and G. Reddy (2002) Direct fermentation of various pure and crude starchy substrates to L(+) lactic acid usingLactobacillus amylophilus GV6.World J. Microbiol. Biotechnol. 18: 429–433.

    Article  CAS  Google Scholar 

  12. Soccol, C. R., V. I. Stonoga and M. Raimbault (1994) Production of L-lactic acid byRhizopus species.World J. Microbiol. Biotechnol. 10: 433–435.

    Article  CAS  Google Scholar 

  13. Rosenberg, M., and L. Kristofikova (1995) Physiological restriction of the L-lactic acid production byRhizopus arrhizus.Acta Biotechnol. 15: 367–374.

    Article  CAS  Google Scholar 

  14. Takagi, M., S. Abe, S. Suzuki, G. H. Emert, and N. Yata (1977) A method for production of alcohol directly from cellulose using cellulase and yeast.Proceedings of the Bioconversion Symposium, III. May 16–20. Delhi, India.

  15. Yu, R. C., and Y. D. Hang (1989) Kinetics of direct fermentation of agricultural commodities to L(+)-lactic acid byRhizopus oryzae Biotechnol. Lett. 11: 597–600.

    Article  CAS  Google Scholar 

  16. Zhou, Y., J. M. Dominguez, N. Cao, J. Du, and G. T. Tsao (1999) Optimization of L-lactic acid production from glucose byRhizopus oryzae ATCC 52311.Appl. Biochem. Biotechnol. 77–79: 401–407.

    Article  Google Scholar 

  17. Hakki, E. E., and M. S. Akkaya (2001) RT-PCR amplification of aRhizopus oryzae lactate dehydrogenase gene fragment.Enzyme Microb. Technol. 28: 259–264.

    Article  CAS  Google Scholar 

  18. Moldes, A. B., J. L. Alonso, and J. C. Parajo (2001) Strategies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation.J. Chem. Technol. Biotechnol. 76: 279–284.

    Article  CAS  Google Scholar 

  19. Jin, B., J. van Leeuwen, B. Patel, H. Doelle, and O. Yu (1999) Production of fungal protein and glucoamylase byRhizopus oligosporus from starch processing wastewater.Proc. Biochem. 34: 59–65.

    Article  CAS  Google Scholar 

  20. Jin, B., O. Yu, and J. van Leeuwen (2001) A bioprocessing mode for fungal biomass protein production and wastewater treatment using external air-lift bioreactor.J. Chem. Technol. Biotechnol. 76: 1041–1048.

    Article  CAS  Google Scholar 

  21. Stenberg, K., M. Galbe, and G., Zacchi (2000) The influence of lactic acid formation on the simultaneous saccharification and fermentation of softwood to ethanol.Enzyme Microb. Technol. 26: 71–79.

    Article  CAS  Google Scholar 

  22. Tomas, L. C., and G. J. Chamberlain (1980)Colorimetric Chemical Analytical Methods. 2nd ed., pp. 3–5. Tintometer Ltd. Press, Salisbary, UK.

    Google Scholar 

  23. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  24. Tsai, S. P., and S. H. Moon (1998) An integrated bioconversion process for production of L-lactic acid from starchy potato feed stocks.Appl. Biochem. Biotechnol. 70–72 417–428.

    Article  Google Scholar 

  25. Oda, Y., K. Saito, H. Yamauchi, and M. Mori (2002) Lactic acid fermentation of potato pulp by the fungusRhizopus oryzae.Curr. Microbiol. 45: 1–4.

    Article  CAS  Google Scholar 

  26. Iyer, P. V., and Y. Y. Lee (1999) Product inhibition in simultaneous saccharification and fermentation of cellulose into lactic acid.Biotechnol. Lett. 21: 371–373.

    Article  CAS  Google Scholar 

  27. Hofvendahl, K., and B. Hahn-Hagerdal (2000) Factors affecting the fermentative lactic acid production from renewable resources.Enzyme Microb. Technol. 26: 87–107.

    Article  CAS  Google Scholar 

  28. Yang, C. W., Z. J. Lu, and G. T. Tsao (1995) Lactic acid production by pellet-formRhizopus oryzae in a submerged system.Appl. Biochem. Biotechnol. 51–52: 57–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ping Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L.P., Jin, B., Lant, P. et al. Direct fermentation of potato starch in wastewater to lactic acid byRhizopus oryzae . Biotechnol. Bioprocess Eng. 9, 245–251 (2004). https://doi.org/10.1007/BF02942338

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02942338

Keywords

Navigation