Skip to main content
Log in

Einfluß chemischer Kontaminanten (insbesondere Schwermetalle) auf die Bodenorganismen und ihre ökologisch bedeutenden Aktivitäten

  • Übersichtsbeiträge
  • Published:
Umweltwissenschaften und Schadstoff-Forschung Submit manuscript

Zusammenfassung

Für die Vorsorge- und Sanierungsmaßnahmen im Rahmen des Bodenschutzes ist es notwendig, Auswirkungen anthropogener Bodenbelastungen auf die im Boden lebenden Organismen und auf ihre ökologisch bedeutenden Aktivitäten zu kennen und voll zu berücksichtigen. Der vorliegende Aufsatz bringt eine Übersicht insbesondere betreffend den Einfluß von Schwermetallen auf (a) die quantitative und qualitative Zusammensetzung der Population von Bodenorganismen; (b) die mikrobiellen Umsetzungen kohlenstoff- und stickstoffhaltiger Substrate; (c) die Enzymaktivitäten im Boden; (d) den Abbau von Pflanzenrückständen; (c) die Resistenzerscheinungen bei Bodenmikroorganismen und (f) die Auswirkungen abiotischer Bodenfaktoren auf die biologische Wirksamkeit der Schadstoffe. Aus den zahlreichen durch Referenzen belegten Erkenntnissen werden Schlußfolgerungen gezogen, die auf die Eignung von Mikrobenpopulationen und ihrer Aktivitäten für die Beurteilung der anthropogenen Bodenbelastungen hinweisen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Jha, D.K.;Sharma, G.D.;Mishra, R.R.: Ecology of soil microflora and mycorrhizal symbionts in degraded forests at two altitudes. Biol. Fertil. Soils 12 (1992) 272–278

    Article  Google Scholar 

  2. Marfenina, O.E.; Popova, L.V.; Zvyagintsev, D.G.: Features of the developmental cycles of microscopic fungi in soils. Pochvovedenie (1991) 80–87

  3. Cancela Da Fonseca, J.P.: Forest management: Impact on soil microarthropods and soil microorganisms. Rev. Ecol. Biol. Sol 27 (1990) 269–284

    Google Scholar 

  4. Tyler, G.: Heavy metals in soil biology and biochemistry. In: Soil Biochemistry, E.A. Paul and J.N. Ladd (eds.), Marcel Dekker, Inc., NY, 5 (1981) 371–414

    Google Scholar 

  5. Gascoyne, D.J.;Connor, J.A.;Bull, A.T.: Isolation of bacteria producing siderophores under alkaline conditions. Appl. Microbiol. Biotechnol. 36 (1991) 130–135

    Article  CAS  Google Scholar 

  6. Gascoyne, D.J.;Connor, J.A.;Bull, A.T.: Capacity of siderophore-producing alkalophilic bacteria to accumulate iron, gallium and aluminium. Appl. Microbiol. Biotechnol. 36 (1991) 163–141

    Article  Google Scholar 

  7. Sahoo, D.K.;Kar, R.N.;Das, R.P.: Bioaccumulation of heavy metal ions by Bacillus circulans. Bioresour. Technol. 41 (1992) 177–179

    Article  CAS  Google Scholar 

  8. Dighton, J.;Clint, G.M.;Poskitt, J.: Uptake and accumulation of cesium-137 by upland grassland soil fungi: A potential pool of cesium immobilization. Mycol. Res. 95 (1991) 1052–1056

    Article  CAS  Google Scholar 

  9. Bisessar, S.: Effect of heavy metals on microorganisms in soils near a secondary lead smelter. Water Air Soil Pollut. 17 (1982) 305–308

    Article  CAS  Google Scholar 

  10. Jordan, M.J.;Lechevalier, M.P.: Effects of zinc-smelter emissions on forest soil microflora. Can. J. Microbiol. 21 (1975) 1855–1865

    Article  CAS  Google Scholar 

  11. Pancholy, S.K.;Rice, E.L.;Turner, J.A.: Soil factors preventing revegetation of denuded area near an abandoned zinc smelter in Oklahoma. J. Appl. Ecol. 12 (1975) 337–342

    Article  CAS  Google Scholar 

  12. Williams, S.T.;McNeilly, T.;Wellington, E.M.H.: The decomposition of vegetation growing on metal mine wastes. Soil Biol. Biochem. 9 (1977) 271–275

    Article  CAS  Google Scholar 

  13. Nordgren, A.;Baath, E.;Soderstrom, B.: Microfungi and microbial activity along a heavy metal gradient. Appl. Environ. Microbiol. 45 (1983) 1829–1837

    CAS  Google Scholar 

  14. Badura, L.;Gorska, B.;Ulfig, K.: Oddzialywanie soli cynku i miedzi na drobnoustroje gleby. Cz. I. Reakcje grzybow. Acta Biol., (Katowice) 7 (1979) 89–99

    Google Scholar 

  15. Badura, L.;Rusecka, J.;Smylla, A.: Oddzialywanie soli cynku i miedzi na drobnoustroje gleby. Cz. II. Reakcja promieniowcow z rodzaju Streptomyces. Acta Biol., (Katowice) 7 (1979) 100–104

    Google Scholar 

  16. Smylla, A.;Mroczkowska-Badner, E.: Influence of cadmium ions on Streptomyces strains. Acta Microbiol. Pol. 40 (1991) 51–58

    CAS  Google Scholar 

  17. Bewley, R.J.F.;Stotzky, G.: Effects of cadmium and zinc on microbial activity in soil, influence of clay minerals. Part I: Metals added individually. Sci. Total Environ. 31 (1983) 41–56

    Article  CAS  Google Scholar 

  18. Bewley, R.J.F.;Stotzky G.: Effects of cadmium and zinc on microbial activity in soil; influence of clay minerals. Part II: Metals added simultaneously. Sci. Total Environ. 31 (1983) 57–70

    Article  CAS  Google Scholar 

  19. Reber, H.H.: Simultaneous estimates of the diversity and the degradative capability of heavy-metal-affected soil bacterial communities. Biol. Fertil. Soils 13 (1992) 181–186

    CAS  Google Scholar 

  20. Bednarz, T.;Starzecka, A.: Development and activity of algae and bacteria in soils under the influence of shortterm action of metallurgic industrial dusts. Arch. Hydrobiol. Suppl. 94 (1992) 129–148

    CAS  Google Scholar 

  21. Jensen, V.: Effects of lead on biodegradation of hydrocarbons in soil. Oikos 28 (1977) 220–224

    Article  CAS  Google Scholar 

  22. Riha, V.; Nymburska, K.; Tichy, R.; Triska, J.: Microbiological, chemical and toxicological characterization of contaminated sites in Czechoslovakia. Sci. Total Environ. Suppl. (1993) 185–193

  23. Lang, E.;Viedt, H.;Egestorff, J.;Hanert, H.H.: Reaction of the soil microflora after contamination with chlorinated aromatic compounds and HCH. Microbiol. Ecol. 86 (1992) 275–282

    Article  CAS  Google Scholar 

  24. Kanazawa, S.;Filip, Z.: Effects of trichloroethylene, tetrachloroethylene and dichloromethane on soil biomass and microbial counts. Zbl. Bakt. Hyg. B 184 (1987) 24–33

    CAS  Google Scholar 

  25. Cserhati, T.;Illes, Z.;Nemes, I.: Effect of non-ionic tensides on the growth of some soil bacteria. Appl. Microbiol. Biotechnol. 35 (1991) 115–118

    Article  CAS  Google Scholar 

  26. Ganin, G.H.: Biogeochemical indications for protected and developed territories (the example of soil invertebrates). Sci. Total Environ., Suppl. (1993) 217–223

  27. Kanazawa, S.;Filip, Z.: Distribution of microorganisms, total biomass, and enzyme activities in different particles of brown soil. Microbiol. Ecol. 12 (1986) 205–215

    Article  CAS  Google Scholar 

  28. Kaszubiak, H.;Muszynska, M.: The occurrence of obligatorily oligotrophic bacteria in the soil. Zentralbl. Mikrobiol. 14 (1992) 143–149

    Google Scholar 

  29. Sato, M.;Ueno, Y.;Sawamura, Y.;Kajikawa, K.;Kimura, Y.;Yokoyama, K.;Izumori, K.: Growth inhibition of obligately oligotrophic soil bacteria by carbohydrates, amino acids and vitamins. Kagawa Daigaku Nogakubu Gakujutsu Hokoku 45 (1993) 31–40

    CAS  Google Scholar 

  30. Angle, J.S.;Chaney, R.L.;Rhee, D.: Bacterial resistance to heavy metals related to extractable and total metal concentrations in soil and media. Soil Biol. Biochem. 25 (1993) 1443–1446

    Article  CAS  Google Scholar 

  31. Chander, K.;Brookes, P.C.: Plant inputs of carbon to metal-contaminated soil and effects on the soil microbial biomass. Soil Biol. Biochem. 23 (1991) 1169–1178

    Article  CAS  Google Scholar 

  32. Chander, K.;Brookes, P.C.: Microbial biomass dynamics during the decomposition of glucose and maize in metal-contaminated and non-contaminated soils. Soil Biol. Biochem. 23 (1991) 917–926

    Article  CAS  Google Scholar 

  33. Bhuiya, M.R.H.;Cornfield, A.H.: Effects of addition of 1 000 ppm Cu, Ni, Pb, and Zn on carbon dioxide release during incubation of soil alone and after treatment with straw. Environ. Pollut. 3 (1972) 173–177

    Article  CAS  Google Scholar 

  34. Giashuddin, M.;Cornfield, A.H.: Effects of adding nickel (as oxide) to soil on nitrogen and carbon mineralization at different pH values. Environ. Pollut. 19 (1979) 67–70

    Article  CAS  Google Scholar 

  35. Cornfeld, A.H.: Effects of addition of 12 metals on carbon dioxide release during incubation of an acid sandy soil. Geoderma 19 (1977) 199–203

    Article  Google Scholar 

  36. Bhat, P.K.;Upadhyaya, S.D.;Dagar, J.C.;Singh, V.P.: Assessment of heavy metal toxicity. 1. Effect on microbial population, mineralization and soil respiration. Curr. Sci. 48 (1979) 571–573

    CAS  Google Scholar 

  37. Chang, F.-H., andBroadbent, F.E.: Influence of trace metals on carbon dioxide evolution from a Yolo soil. Soil Sci. 132 (1981) 416–421

    Article  CAS  Google Scholar 

  38. Babich, H.;Bewley, R.J.E.;Stotzky, G.: Application of the “ecological dose” concept to the impact of heavy metals on some microbe-mediated ecologic processes in soil. Arch. Environ. Contam. Toxicol. 12 (1983) 421–426

    CAS  Google Scholar 

  39. Doelman, P.;Haanstra, L.: Effects of lead on the decomposition of organic matter. Soil Biol. Biochem. 11 (1979) 481–485

    Article  CAS  Google Scholar 

  40. Landmeyer, J.E.;Bradley, P.M.;Chapelle, F.H.: Influence of Pb on microbial activity in Pb-contaminated soils. Soil Biol. Biochem. 25 (1993) 1465–1466

    Article  CAS  Google Scholar 

  41. Wilke, B.-M.;Bräutigam L.: Effects of polychlorinated biphenyls on soil microbial activity. Z. Pflanzenernähr. Bodenkd. 155 (1992) 483–488.

    Article  CAS  Google Scholar 

  42. Hassink, J.: Effects of soil texture and structure on carbon and nitrogen mineralization in grassland soils. Biol. Fertil. Soils 14 (1992) 126–134

    Article  CAS  Google Scholar 

  43. Rutherford, P.M.;Juma, N.G.: Influence of soil texture on protozoa-induced mineralization of bacterial carbon and nitrogen. Can. J. Soil Sci. 72 (1992) 193–200

    Google Scholar 

  44. Rutherford, P.M.;Juma, N.G.: Influence of texture on habitable pore space and bacterial-protozoan populations in soil. Biol. Fertil. Soils 12 (1992) 221–227

    Article  Google Scholar 

  45. Kralova, M.: Carbon dioxide production at low soil redox potentials. Sci. Agric. Bohemoslov. 23 (1991) 97–100

    CAS  Google Scholar 

  46. Tyler, G.: Heavy metal pollution and mineralization of nitrogen in forest soils. Nature 255, (1975) 701–702

    Article  CAS  Google Scholar 

  47. Premi, P.R.;Cornfield, A.H.: Effects of addition of copper, manganese, zinc, and chromium compounds on ammonification and nitrification during incubation in soil. Plant Soil 31, (1969) 345–352

    Article  CAS  Google Scholar 

  48. Quraishi, M.S.I.;Cornfield, A.H.: Effects of addition of varying levels of copper, as oxide or phosphate, on nitrogen mineralization and nitrification during incubation of a slightly calcareous soil receiving dried blood. Plant Soil 35 (1971) 51–55

    Article  CAS  Google Scholar 

  49. Chang, F.-H.;Broadbent, F.E.: Influence of trace metals on some soil nitrogen transformations. J. Environ. Qual. 11 (1982) 1–4

    CAS  Google Scholar 

  50. Giashuddin, M.;Cornfield, A.H.: Incubation study on effects of adding varying levels of nickel (as sulfate) on nitrogen and carbon mineralization in soil. Environ. Pollut. 15 (1978) 231–234

    Article  CAS  Google Scholar 

  51. Rother, J.A.;Millbank, J.W.;Thornton, I.: Effects of heavy-metal additions on ammonification and nitrification in soils contaminated with cadmium, lead and zinc. Plant Soil 69 (1982) 239–258

    Article  CAS  Google Scholar 

  52. Bewley, R.J.F.;Stotzky, G.: Effects of cadmium and simulated acid rain on ammonification and nitrification in soil. Arch. Environ. Contam. Toxicol. 12 (1983) 285–291

    Article  CAS  Google Scholar 

  53. Bollag, J.-M.;Barabasz, W.: Effect of heavy metals on the denitrification process in soil. J. Environ. Qual. 8 (1979) 196–201

    CAS  Google Scholar 

  54. Lighthart, B.: Effects of certain cadmium species on pure and litter populations of microorganisms. Antonie van Leeuwenhoek 46, (1980) 161–167

    Article  CAS  Google Scholar 

  55. Kralova, M.;Masscheleyn, P.H.;Patrick, W.H.: Redox potential as an indicator of electron availability for microbial activity and nitrogen transformations in aerobic soil. Zentralbl. Mikrobiol. 147 (1992) 388–399

    Google Scholar 

  56. Kralova, M.;Masscheleyn, P.H.;Lindau, C.W.;Patrick, W.H.: Production of dinitrogen and nitrous oxide in soil suspensions as affected by redox potential. Water Air Soil Pollut. 61 (1992) 37–46

    Article  CAS  Google Scholar 

  57. Chaudri, A.M.;McGrath, S.P.;Giller, K.E.: Metal tolerance of isolates of Rhizobium leguminosarum biovar trifolii from soil contaminated by past applications of sewage sludge. Soil Biol. Biochem. 24 (1992) 83–88

    Article  CAS  Google Scholar 

  58. Smith, S.R.;Giller, K.E.: Effective Rhizobium leguminosarum biovar trifolii present in five soils contaminated with heavy metals from long-term applications of sewage sludge of metal mine soil. Soil Biol. Biochem. 24 (1992) 781–788

    Article  CAS  Google Scholar 

  59. Caudri, A.M.;McGrath, S.P.;Giller, K.E.;Rietz, E.;Sauerbeck, D.R.: Enumeration of inidgenous Rhizobium leguminosarum biovar trifolii in soils previously treated with metal contaminated sewage sludge. Soil Biol. Biochem. 25 (1993) 301–309

    Article  Google Scholar 

  60. Wainwright, M.;Duddridge, J.E.: Effects of heavy metals on enzyme synthesis in substrate-amended river sediments. Eur. J. Appl. Microbiol. Biotechnol. 15 (1982) 241–245

    Article  CAS  Google Scholar 

  61. Cole, M.A.: Lead inhibition of enzyme synthesis in soil. Appl. Environ. Microbiol. 33 (1977) 262–268

    CAS  Google Scholar 

  62. Tyler, G.: Influence of vanadium on soil phosphatase activity. J. Environ. Qual. 5 (1976) 216–217

    CAS  Google Scholar 

  63. Juma, N.G.;Tabatabai, M.A.: Effects of trace elements on phosphatase activity in soils. Soil. Sci. Soc. Amer. J. 41 (1977) 343–346

    CAS  Google Scholar 

  64. Al-Khafaji, A.A.;Tabatabai, M.A.: Effects of trace elements on arylsulfatase activity in soils. Soil. Sci. 127 (1979) 129–133

    Article  CAS  Google Scholar 

  65. Tu, C.M.: Influence of pesticides on activities of invertase, amylase, and level of adenosine triphosphate in organic soil. Chemosphere 11 (1982) 909–914

    Article  CAS  Google Scholar 

  66. Badura, L.;Pacha, J.;Sliwa, U.: Wplyw cynku i miedzi na aktywnosc enzymatyczna gleby. Acta Biol. (Katowice) 9 (1980) 128–142

    Google Scholar 

  67. Doelman, P.;Haanstra, L.: Effect of lead on soil respiration and dehydrogenase activity. Soil Biol. Biochem. 11 (1979) 475–479

    Article  CAS  Google Scholar 

  68. Rossel, D.;Tarradellas, J.: Dehydrogenase activity of soil microflora: Significance in ecotoxicological tests. Environ. Toxicol. Water Qual. 6 (1991) 17–34

    Article  CAS  Google Scholar 

  69. Chander, K.;Brookes, P.C.: Is the dehydrogenase assay invalid as a method to estimate microbial activity in copper contaminated soils? Soil Biol. Biochem. 23 (1991) 909–916

    Article  CAS  Google Scholar 

  70. Kanazawa, S.;Filip, Z.: Effects of trichloroethylene, tetrachloroethylene and dichloromethane on enzymatic activities in soil. Appl. Microbiol. Biotechnol. 25 (1986) 76–81

    Article  CAS  Google Scholar 

  71. Martin, J.F.;Ervin, J.O.;Sheperd, R.A.: Decomposition of the iron, aluminium, zinc and copper salts or complexes of some microbial and plant polysaccaride in soil. Soil Sci. Soc. Amer. Proc. 30 (1966) 196–200

    CAS  Google Scholar 

  72. Spalding, B.P.: Effects of divalent metal chlorides on respiration and extractable enzymatic activities of Douglas-fir needle litter. J. Environ. Qual. 8 (1979) 105–109

    CAS  Google Scholar 

  73. Strojan, C.L.: Forest leaf litter decomposition in the vicinity of a zinc smelter. Oecologia 32 (1978) 203–212

    Article  Google Scholar 

  74. Chaney, W.R.;Kelly, J.M.;Strickland, R.C.: Influence of cadmium and zinc on carbon dioxide evolution from litter and soil from a black oak forest. J. Environ. Qual. 7 (1978) 115–119

    Article  CAS  Google Scholar 

  75. Ausmus, B.S.;Dodson, G.J.;Jackson, D.R.: Behavior of heavy metals in forest microcosms. III. Effects on litter-soil carbon metabolism. Water Air Soil Pollut. 10 (1978) 19–26

    Article  CAS  Google Scholar 

  76. Lastuvka, Z.;Spinarova, E.: Effects of lead and lead-humic acids complex on maize seedlings. Scripta (Brno) 20 (1990) 413–418

    Google Scholar 

  77. Menkissoglu, O.;Lindow, S.E.: Relationship of free ionic copper and toxicity to bacteria in solutions of organic compounds Phytopathology 81 (1991) 1258–1263

    Article  CAS  Google Scholar 

  78. Francis, A.J.;Dodge, C.J.;Gillow, J.B.: Biodegradation of metal citrate complexes and implications for toxic-metal mobility. Nature 356 (1992) 140–142

    Article  CAS  Google Scholar 

  79. Chander, K.;Brookes, P.C.: Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty loam UK soil. Soil Biol. Biochem. 23 (1991) 927–932

    Article  Google Scholar 

  80. Spostto, G.;Yang, A.;Neal, R.H.;Mackzum, A.: Selenate reduction in an alluvial soil. Soil Sci Soc. Am. J. 55 (1991) 1597–1602

    Google Scholar 

  81. Doelman, P.: Resistance of soil microbial communities to heavy metals. In: FEMS Symposium Microbial Communities in Soil, V. Jensen, A. Kjoller, and L.H. Sorensen (eds.), Elsevier Applied Science Publishers, London and New York 33 (1986) 369–384

    Google Scholar 

  82. Babich, H.;Stotzky, G.: Sensitivity of various bacteria, including actinomycetes, and fungi to cadmium and the influence of pH on sensitivity. Appl. Environ. Microbiol. 33 (1977) 681–695

    CAS  Google Scholar 

  83. Doelman, P.;Haanstra, L.: Effects of lead on the soil bacterial microflora. Soil Biol. Biochem. 11 (1979) 487–491

    Article  CAS  Google Scholar 

  84. Kelly, W.J.;Reanny, D.C.: Mercury resistance among soil bacteria: ecology and transferability of genes encoding resistance. Soil. Biol. Biochem. 16 (1984) 1–8

    Article  CAS  Google Scholar 

  85. Duxbury, T.;Bicknell, B.: Metal-tolerant bacterial populations from natural and metal-polluted soils. Soil Biol. Biochem. 15 (1983) 243–250

    Article  CAS  Google Scholar 

  86. Al-Aoukaty, A.;Appanna, V.D.;Huang, J.: Exocellular and intracellular accumulation of lead in Pseudomonas fluorescens ATCC 13525 is mediated by the phosphate content of the medium. FEMS Microbiol. Lett. 83 (1991) 283–290

    Article  CAS  Google Scholar 

  87. Anderson, S.;Appanna, V.D.: Indium detoxification in Pseudomonas fluorescens. Environmental Pollution 82 (1993) 33–37

    Article  CAS  Google Scholar 

  88. Landa, E.R.;Fang, S.C.: Effect of mercuric chloride on carbon mineralization in soils. Plant Soil 49 (1978) 179–183

    Article  CAS  Google Scholar 

  89. Babich, H.;Stotzky, G.: Toxicity of nickel to microorganisms in soil: influence of some physicochemical characteristics. Environ. Pollut. 29A (1982) 303–315

    Google Scholar 

  90. Babich, H.;Stotzky, G.: Temperature, pH, salinity, hardness, and particulates mediate nickel toxicity to cubacteria, an actinomycete, and yeasts in lake, simulated estuarine, and sea waters. Aquatic Toxicol. 3 (1983) 195–208

    Article  CAS  Google Scholar 

  91. Babich, H.;Stotzky, G.: Further studies on environmental factors that modify the toxicity of nickel to microbes. Reg. Toxicol. Pharmacol. 3 (1983) 82–99

    Article  CAS  Google Scholar 

  92. Babich, H.;Stotzky, G.: Abiotic factors affecting the toxicity of lead to fungi. Appl. Environ. Microbiol. 38 (1979) 506–514

    CAS  Google Scholar 

  93. Wilke, B.M.: Einfluß verschiedener Bodeneigenschaften auf die mikrobielle Toxizität von Blei und Cadmium. Z. Pflanzenernähr. Bodenk. 154 (1991) 417–424

    Article  CAS  Google Scholar 

  94. Guzev, V.S.;Levin, S.V.;Zvyagintsev, D.G.: The response of the microbial system of soil to a heavy metal concentration gradient. Microbiologia 54 (1985) 414–420

    CAS  Google Scholar 

  95. Mikkelsen, J.P.: Effects of lead on the microbiological activity in soil. Tidater Plant 78 (1974) 509–516

    CAS  Google Scholar 

  96. van Faassen, H.G.: Effects of mercury compounds on soil microbes. Plant Soil 38 (1973) 485–487

    Article  Google Scholar 

  97. Belli, M.;Blasi, M.;Capra, E.;Drigo, A.;Menegon, S.;Piasentier, E.;Sansone, U.: Ingested soil as a source of137Cs to ruminants. Sci. Total Environ. 136 (1993) 243–249

    Article  CAS  Google Scholar 

  98. Chamard, P.;Veasco, R.H.;Belli, M.;Di Silvestro, G.;Ingrao, G.;Sasone, U.: Caesium-137 and strontium-90 in a soil profile. Sci. Total Environ. 136 (1993) 251–258

    Article  CAS  Google Scholar 

  99. Babich, H.; Stotzky, G.: Physicochemical factors of natural resevoirs affect the transformation and exchange of heavy metals toxic to microbes. In: Environment. Biogeochem., Proc. 5th Int. Sym. Biogeochem. (ISEB), Ecol. Bull. , R.O. Hallberg (ed.), Stockholm, Sweden 35 (1983) 315–323.

  100. Bhuiya, M.R.H.;Cornfield, A.H.: Incubation study on effect of pH on nitrogen mineralization and nitrification in soils treated with 1000 ppm lead and zinc, as oxides. Environ. Pollut. 7 (1974) 161–164

    Article  CAS  Google Scholar 

  101. Bewley, R.J.F.;Stotzky, G.: Effects of combinations of simulated acid rain and cadmium or zinc on microbial activity in soil. Environ. Res. 31 (1983) 332–339

    Article  CAS  Google Scholar 

  102. Babich, H.;Stotzky, G.: Components of water hardness that reduce the toxicity of nickel to fungi. Microbios Lett. 18 (1981) 17–24

    CAS  Google Scholar 

  103. Babich, H.;Stotzky, G.: Influence of water hardness on the toxicity of heavy metals to fungi. Microbios Lett. 16 (1981) 79–84

    CAS  Google Scholar 

  104. Babich, H.;Stotzky, G.: Influence of chloride ions on the toxicity of cadmium to fungi. Zbl. Bakt. Microbiol. Hyg. I Abt. Orig. C3 (1982) 421–426

    CAS  Google Scholar 

  105. Rother, J.A.;Millbank, J.W.;Thornton, I.: Seasonal fluctuations in nitrogen fixation (acetylene reduction) by freeliving bacteria in soils contaminated with cadmium, lead, and zinc. J. Soil Sci. 33 (1982) 101–113

    Article  CAS  Google Scholar 

  106. Cole, M.A.: Solubilization of heavy metal sulfides by heterotrophic soil bacteria. Soil Sci. 127 (1979) 313–317

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filip, Z. Einfluß chemischer Kontaminanten (insbesondere Schwermetalle) auf die Bodenorganismen und ihre ökologisch bedeutenden Aktivitäten. UWSF - Z Umweltchem Ökotox 7, 92–102 (1995). https://doi.org/10.1007/BF02938775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02938775

Schlagwörter

Navigation