Skip to main content
Log in

Analytical techniques for vancomycin—A review

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Vancomycin belongs to the vancomycin-ristocetin family of glycopeptides, and is a subclass of linear sugar containing peptides composed of seven amino acids. Its stereochemical configuration forms the basis of a particular mode of action, though its complexation with the D-alanyl-D-alanine terminus of peptidoglycon monomer. The glycosylated hexapeptide chain consists of chloro-β-hydroxytyrosines, p-hydroxyphenylglycines, N-methylleucine and aspartic acid forms a rigid molecular frame work and gives the difficulty in the analysis. Vancomycin in the serum samples is usually estimated by liquid chromatography and the bacterial sensitivity was genereally tested by the microbiological assay. The present review deals with the qualitative, quantitative, microbiological and immunological assays and the comparison of the quantitative methods. Clinical implications of vancomycin have also been cited in the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cavalleri, B. and E. Parenti (1984) In: M. Howe-Grant (ed)Encyclopaedia of Chemical Technology, 4th ed. Vol. 2, John-Wiley, NY.

    Google Scholar 

  2. United States Pharmacopoeia/National Formulary. (1985) Volume 21.

  3. Chapman and Hall Chemical Database, USA (1994)Dictionary of Natural products. Volume 5, R-Z.

  4. McComic, M. H. and J. M. McGuire (1962) Vancomycin and method for its preparation. U.S. Patent 3, 067,099.

  5. Chapman and Hall chemical Database. (1990)Dictionary of drugs USA.

  6. Williams, D. H. and J. R. Kalman (1977) Structural and mode of action studies on the antibiotic vancomycin. Evidence from 270 MHz proton magnetic resonance.J. Amer. Chem. Soc. 99: 2768–2774.

    Article  CAS  Google Scholar 

  7. Bongini, A., J. Feeney, M. P. Williamson, and D. H. Williams (1981) Assignment of the carbon-13 spectrum of vancomycin and its derivatives.J. Chem. Soc. Perkins-Trans. 2: 201–206.

    Article  Google Scholar 

  8. Thomas, A. H. and P. Newland (1987) Chromatographic methods for the analysis of vancomycin.J. Chromatogr. 410: 373–382.

    Article  CAS  Google Scholar 

  9. Morselli, P. L., G. Bianchetti, G. Durand, M. F. Le Heuzey, E. Zarifian, and M. Dugas (1979) Haloperidol plasma level monitoring in paediatric patients.Ther. Drug. Monit. 1: 35–46.

    CAS  Google Scholar 

  10. Jehl, F., C. Gallion, R. C. Theirry, and H. Monteil (1985) Determination of vancomycin in human serum by high-pressure liquid chromatography.Antimicrob. Agents. Chemother. 27: 503–507.

    CAS  Google Scholar 

  11. Hoagland, R. J., J. E. Sherwin, and J. M. Phillips Jr. (1984) Vancomycin: a rapid HPLC assay for a potent antibiotic.J. Anal. Toxicol. 8: 75–77.

    CAS  Google Scholar 

  12. Bauchet, J., E. Pussard, and J. J. Garaud (1987) Determination of vancomycin in serum and tissues by column liquid chromatography using solid-phase extraction.J. Chromatogr. 414: 472–476.

    Article  CAS  Google Scholar 

  13. Hosotsubo H. (1989) Rapid and specific method for the determination of vancomycin in plasma by high-performance liquid chromatography on an aminopropyl column.J. Chromatogr. 487: 421–427.

    Article  CAS  Google Scholar 

  14. McClair, J. B. L., R. Bongiovanni, and Broen (1932) Vancomycin quantitation by high-performance liquid chromatography in human serum.J. Chromatogr. 281: 463–466.

    Google Scholar 

  15. Rosenthal, A. F. and I. Sarfati (1986) Simplified liquidchromatographic determination of vancomycin.Clin. Chem. 32: 1016–1019.

    CAS  Google Scholar 

  16. Hu, M. W., L. Anne, T. Forni, and K. Gettwald (1990) Measurement of vancomycin in renally impaired patient samples using a new high-performance liquid chromatography method with vitamin B12 internal standard: comparison of high-performance liquid chromatography, emit, and fluorescence polarisation immunoassay methods.Ther. Drug. Monit. 12: 562–569.

    Article  CAS  Google Scholar 

  17. Szataricskai, F., J. Borda, M. M. Puskas, and R. Bognar (1988) High performance liquid chromatography (HPLC) of antibiotics of vancomycin type. Comparative studies.J. Antibiot 36: 1691–1698.

    Google Scholar 

  18. Jehl, E., H. Monteil, and C. Gallion (1985) HPLC, RIA, FPIA. Evaluation of 3 methods for the assay of vancomycin.Pathol. Biol. 33: 511–516.

    CAS  Google Scholar 

  19. Liu, Y., Y. Zhou, and L. D. Y. Xnebao (1985) From C. A. S. 1986, 105, 30145e, 20, 931.

  20. Creene, S. V., T. Abdullah, S. L. Morgan, and C. S. Bryan (1987) High-performance liquid chromatographic analysis of vancomycin in plasma, bone, atrial appendage tissue and pericardial fluid.J. Chromatogr. 417: 121–128.

    Article  Google Scholar 

  21. United States Federal Drug Agency, Federal Register (1989) 54. 20382.

  22. Liu, Y., Y. Zhou, and D. L. Kangshengsu (1986) From C.A.S. 1986. 104 193275r.

  23. National Committee for Clinical Laboratory Standards (1983) Methods for dilution for antimicrobial disk susceptibility for bacteria that grow aerobically Villanova. PA 19805.

  24. Barry, A. L., C. Thornsberry, and C. R. Jones (1986) Evaluation of teicoplanin and vancomycin disk susceptibility tests.J. Clin. Microbiol. 23: 100–103.

    CAS  Google Scholar 

  25. Filburn, B. H., V. H. Shaw, Y. M. Tempera, and J. D. Dick (1988) Evaluation of an automated fluorescence polarization immunoassay for vancomycin.Antimicrob. Agents. Chemother. 24: 216–220.

    Google Scholar 

  26. Schewenzer, K. S., C. H. J. Wang, and J. P. Anhalt (1983) Automated fluorescence polarization immunoassay for monitoring vancomycin.Ther. Drug. Monit. 5: 341–345.

    Article  Google Scholar 

  27. Ackerman, B. H., H. G. Berg, R. G. Strate, and J. C. Rotschafater (1983) Comparison of radioimmunoassay and fluorescent polarization immunoassay for quantitative determination of vancomycin concentrations in serum.J. Clin. Microbiol. 18: 994–995.

    CAS  Google Scholar 

  28. Joos, B., R. Leuthy, and J. Blases (1989) Long-term accuracy of fluorescence polarization immunoassays for gentamicin, tobramycin, netilmicin and vancomycin.J. Antimicrob. Chemother. 24: 797–803.

    Article  CAS  Google Scholar 

  29. Corti, A., C. Rurali, A. Borghi, and G. Cassani (1985) Solid-phase enzyme-receptor assay (SPERA): a competitive-binding assay for glycopeptide antibiotics of the vancomycin class.Clin. Chem. 31: 1606–1610.

    CAS  Google Scholar 

  30. Pohlod, D. J., L. D. Saravolatz, and M. M. Sommerville (1984) Comparison of fluorescence polarization immunoassay and bioassay of vancomycin.J. Clin. Microbiol. 20: 159–161.

    CAS  Google Scholar 

  31. Ristuccia, P. A., A. M. Ristuccia, J. H. Bidanset, and B. A. Cunha (1984) Comparison of bioassay, high-performance liquid chromatography, and fluorescence polarization immunoassay for quantitative determination of vancomycin in serum.Ther. Drug. Monit. 6: 238–242.

    Article  CAS  Google Scholar 

  32. Pfaller, M. A., D. J. Krogstad, G. G. Granich, and P. R. Murray (1984) Laboratory evaluation of five assay methods for vancomycin: bioassay, high-pressure liquid chromatography, fluorescence polarization immunoassay, radio-immunoassay, and fluorescence immuneassay.J. Clin. Microbiol. 20: 311–316.

    CAS  Google Scholar 

  33. Morse, G. D., D. W. Nairn, J. S. Bertino Jr. and J. J. Walshe (1987) Overestimation of vancomycin concentrations utilizing fluorescence polarization immunoassay inpatients on peritoneal dialysis.Ther. Drug. Monit. 9: 212–215.

    Article  CAS  Google Scholar 

  34. White, L. O., R. Edwards, H. A. Holt, A. M. Lovering, and R. G. Finch (1988) Thein-vitro degradation at 37°C of vancomycin in serum, CAPD fluid and phosphatebuffered saline.J. Antimicrob. Chemother. 22: 739–745.

    Article  CAS  Google Scholar 

  35. Yeo, K. T., W. Traverse, and G. L. Horrowitz (1989) Clinical performance of the EMIT vancomycin assay.Clin. Chem. 35: 1504–1507.

    CAS  Google Scholar 

  36. Takacs N., K. B. Noszal, M. Tokes-Kovesdi, and G. Szarz (1993) Acid-base properties and proton-speciation of vancomycin.Int. J. Pharma 89: 261–263.

    Article  Google Scholar 

  37. Jandreski, M. A. and J. Garbincins (1993) Measurement of antimicrobial agents in cerebrospinal fluid using the Abbott TDx analyzer.J. Clin. Lab. Anal. 7: 263–268.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gokul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sattur, A.P., Lee, JH., Song, KB. et al. Analytical techniques for vancomycin—A review. Biotechnol. Bioprocess Eng. 5, 153–158 (2000). https://doi.org/10.1007/BF02936586

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02936586

Keywords

Navigation