Skip to main content
Log in

Steroid modulation of the GABA/benzodiazepine receptor-linked chloride lonophore

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recent findings suggest that steroids with sedative-hypnotic properties interact specifically with the γ-aminobutyric acidA/benzodiazepine receptor-chloride ionophore complex (GBRC). They show positive heterotropic cooperativity by allosterically enhancing the binding of GABA agonists and the clinically useful benzodiazepines (BZs) to their respective recognition sites. These steroids have stringent structural requirements for activity at the GBRC, with the essential requirements for high potency being a 3α-hydroxyl group and a 5α-reduced A-ring. Some of these steroids are naturally occurring metabolites of progesterone and deoxycorticosterone and have nanomolar potencies as potentiators of chloride channel conductance. These 3α-hydroxylated, 5α-reduced steroids do not act through any known sites on the GBRC. Thus, the exact site and mechanism of action remain to be determined. Together with the observation that physiological levels of these metabolites are sufficient to influence the function of the GBRC, the evidence clearly suggests a role for these steroids in the normal regulation of brain excitability by potentiating the postsynaptic effects of γ-aminobutyric acid (GABA). Pharmacological studies of the GBRC-active steroids show that they possess anxiolytic and anticonvylsan activities. The potential therapeutic application of these steriods in the treatment of mood disorders and catamenial exacerbation of seizures associated with the menstrual cycle is discussed. Collectively, the evidence from the studies of these steriods imply that another mechanism by which the endocrine system influences brain function has been identified. Its characterization will provide important insight into how steroids modulate brain excitability under normal and pathophysiological states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike N., Maruyama T., and Tokutomi N. (1987) Kinetic properties of the pentobarbitone-gate chloride current in frog sensory neurones.J. Physiol. 394, 85–98.

    PubMed  CAS  Google Scholar 

  • Ariyoshi M. and Akasu T. (1986) Glucocorticoid modulates the sensitivity of the GABAA receptor on primary afferent neurons on bullfrogs.Brain Res. 367, 332–336.

    Article  PubMed  CAS  Google Scholar 

  • Arunlakshana O. and Schild H. O. (1959) Some quantitative uses of drug antagonists.Br. J. Pharmacol. 14, 48–58.

    CAS  Google Scholar 

  • Backstrom T., Bixo M., and Hammarback S. (1985) Ovarian steroid hormones: effects on mood, behavior, and brain excitability.Acta Obstet. Gynecol. Scand. Suppl. 130, 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Barker J. and Mathers D. (1981) GABA analogs activate on channels of different duration on cultured mouse spinal neurons.Science 2312, 358–361.

    Article  Google Scholar 

  • Barker J. L., Harrison N. L., Lange G. D., and Owen D. G. (1987) Potentiation of γ-aminobutyric-acid-activated chloride conductance by a steroid anesthetic in cultured rat spinal neurones.J. Physiol. 386, 485–501.

    PubMed  CAS  Google Scholar 

  • Bellville J. W., Howland W. S., and Bogan C.P. (1956) Comparison of the electroencephalographic patterns during steroid and barbiturate narcosis.Br. J. Anesth. 28, 50–54.

    Article  CAS  Google Scholar 

  • Bormann J., Hamill O. P., and Sakmann B. (1987) Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones.J. Physiol. 385, 243–286.

    PubMed  CAS  Google Scholar 

  • Bowery N. G., Collins J. F., and Hill R. G., (1976) Bicyclic phosphorous esters that are potent convulsants and GABA antagonists.Nature 261, 601–603.

    Article  PubMed  CAS  Google Scholar 

  • Bowery N. G., Doble A., Hill D. R., Hudson A. L., Haw J. S., Turnbull M. J., and Warrington R. (1981) Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals.Eur. J. Pharmacol. 71, 53–70.

    Article  PubMed  CAS  Google Scholar 

  • Bowery N. G., Hill D. R., and Hudson A. L., (1983) Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes.Br. J. Pharmacol. 78, 191–206.

    PubMed  CAS  Google Scholar 

  • Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Show J., and Turnbull M., (1980) (−) Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor.Nature 283, 92–94.

    Article  PubMed  CAS  Google Scholar 

  • Braestrup C., Nielsen M., and Olsen C. E. (1980) Urinary and brain beta-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors.Proc. Natl. Acad. Sci. USA 77, 2288–2292.

    Article  PubMed  CAS  Google Scholar 

  • Braestrup C., Schmiechen R., Neif G., Nielsen M., and Petersen E. N. (1982) Interaction of convulsive ligands with benzodiazepine receptors.Science 216, 1241–1243.

    Article  PubMed  CAS  Google Scholar 

  • Bristow D. R., and Martin I. L. (1987) Solubilization of the γ-aminobutyric acid/benzodiazepine receptor from rat cerebellum: optimal preservation of the modulatory responses by natural brain lipids.J. Neurochem. 49, 1386–1393.

    Article  PubMed  CAS  Google Scholar 

  • Choi D., Farb D., and Fishbach G., (1981) Chlordiazepoxide selectively potentiates GABA conductance of spinal cord and sensory neurons in cell culture.J. Neurophysiol. 45, 621–631.

    PubMed  CAS  Google Scholar 

  • Cowen P. J., Green A. T., Nutt D. J., and Martin I. L. (1981) Ethyl β-carboline carboxylate lowers seizure threshold and antagonize flurazepam-induced sedation in rats.Nature 290, 54–55.

    Article  PubMed  CAS  Google Scholar 

  • Craig C. R. (1966) Anticonvulsant activity of steroids: separability of anticonvulsant from hormonal effects.J. Pharmacol. Exp. Ther. 153, 337–343.

    CAS  Google Scholar 

  • Crawley J. and Goodwin F. K. (1980) Preliminary of a simple animal model for the behavioral actions of benzodiazepines.Pharmacol. Biochem. Behav. 13, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Crawley J. N., Glowa J. R., Majewska M. D., and Paul S. M. (1986) Anxiolytic activity of an endogenous adrenal steroid.Brain Res. 398, 382–385.

    Article  PubMed  CAS  Google Scholar 

  • Dalton K. (1984) Premenstrual syndrome and progesterone therapy. 2nd ed.Chicago Yearbook Chicago, 1984.

    Google Scholar 

  • De Souza E. B., Goeders N. E., and Kuhar M. J. (1986) Benzodiazepine receptors in rat brain are altered by adrenalectomy.Brain Res. 381, 176–181.

    Article  PubMed  Google Scholar 

  • Dorfman R. I. and Ungar F. (1965) Metabolism of steroid hormones. Academic Press, New York.

    Google Scholar 

  • Duman R. S., Sweetnam P. M., Gallambardo P. A., and Tallman J. F. (1987) Molecular biology of inhibitory amino acid receptors.Mol. Neurobiol. 1, 155–189.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap K. (1981) Two types of ψ-aminobutyric acid receptor on embryonic sensory neurones.Br. J. Pharmacol. 74, 579–585.

    PubMed  CAS  Google Scholar 

  • Ehlert F. J. (1986) “Inverse agonists”, cooperativity and drug action at benzodiazepine receptors.Trend Pharmacol. Sci. 7, 28–32.

    Article  CAS  Google Scholar 

  • Ehlert F. J., Roeske W. R., Gee K. W., and Yamamura H. I. (1983) An allosteric model for benzodiazepine receptor function.Biochem. Pharmacol. 32, 2375–2383.

    Article  PubMed  CAS  Google Scholar 

  • Enna S. J., Collins J. F., and Snyder S. H. (1977) Stereo-specificity and structure-activity requirements of GABA receptor binding in rat brain.Brain Res. 124, 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Falch E., Jacobsen P., Krogsgaard-Larsen P., and Curtis D. (1985) GABA-mimetic activity and effects on diazepam binding of amino-sulphonic acids structurally related to piperidine-4-sulphonic acid.J. Neurochem. 44, 68–75.

    Article  PubMed  CAS  Google Scholar 

  • Fesik S. W. and Makriyannis A. (1986) Geometric requirements for membrane perturbation and anesthetic activity: conformational analysis of alphaxalone and delta 16-alphaxalone and2HNMR studies on their interactions with model membranes.Mol. Pharmacol. 27, 624–629.

    Google Scholar 

  • Figdor S. K., Kodet M. J., Bloom B. M., Agnello E. J., Pan S. Y., and Laubach G. D. (1957) Central activity and structure in a series of water soluble steroids.J. Pharmacol. Exp. Ther. 119, 299–309.

    PubMed  CAS  Google Scholar 

  • File S. E. (1980) The use of social interaction as a method for detecting anxiolytic activity of chlordiazepoxide-like drugs.J. Neurosci. Meth. 2, 219–238.

    Article  CAS  Google Scholar 

  • Gallagher D. W., Rauch S., and Malcolm A. (1984) Alterations in a low affinity GABA recognition site following chronic benzodiazepines.Eur. J. Pharmacol. 98, 159, 160.

    Article  Google Scholar 

  • Gee K. W., Bolger M. B., Brinton R. E., Coirini H., and McEwen B. S. (1988) Steroid modulation of the chloride ionophore in rat brain: structure activity requirements, regional dependence and mechanism of action.J. Pharmacol. Exp. Ther. 246, 803–812.

    PubMed  CAS  Google Scholar 

  • Gee K. W., Brinton R. E., and McEwen B. S. (1988) Regional distribution of a Ro5 4864 binding site that is functionally coupled to the ψ-aminobutyric acid/benzodiazepine receptor complex in rat brain.J. Pharmacol. Exp. Ther. 244, 379–383.

    PubMed  CAS  Google Scholar 

  • Gee K. W., Brinton R. E., Chang W. C., and McEwen B. S. (1987) Gamma-aminobutyric acid-dependent modulation of the chloride ionophore by steroids in rat brain.Eur. J. Pharmacol. 136, 419–423.

    Article  PubMed  CAS  Google Scholar 

  • Gee K. W., Joy D. S., and Belelli D. Complex interactions between pregnenolone sulfate and the TBPS labeled chloride ionophore in rat brain.Brain Res. (in press).

  • Gee K. W., Lawrence L. J., and Yamamura H. I. (1986) Modulation of the chloride ionophore by benzodiazepine receptor ligands: influence of GABA and ligand efficacy.Mol. Pharmacol. 30, 218–255.

    PubMed  CAS  Google Scholar 

  • Goeders N. E., De Souza E. B., and Kuhar M. J. (1986) Benzodiazepine GABA ratios: regional differences in rat brain and modulation by adrenalectomy.Eur. J. Pharmacol. 129, 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Gyermek L. (1974) Increased toxicity of Althesin in newborn animals.Br. J. Anaesth. 46, 704.

    Article  PubMed  CAS  Google Scholar 

  • Gyermek L. and Soyka L. F. (1975) Steroid anesthetics.Anesthesiology 42, 331–344.

    Article  PubMed  CAS  Google Scholar 

  • Haefely W. and Polc P. (1982) Electrophysiological studies on the interaction of anxiolytic drugs with GABAergic mechanisms, in Anxiolytics: Neurochemical, Behavioral, and Clinical Perspectives, Malick J. B., Enna S. J., and Yamamura H. I., eds., Raven Press, New York, pp. 113–145.

    Google Scholar 

  • Harrison N. L. and Simmonds M. A. (1984) Modulation of the GABA receptor complex by a steroidanesthetic.Brain Res. 323, 287–292.

    Article  PubMed  CAS  Google Scholar 

  • Harrison N. L., Majewska M. D., Harrington J. W., and Barker J. L. (1987) Structure-activity relationships for steroid interaction with the gamma-aminobutyric acid-A receptor complex.J. Pharmacol. Exp. Ther. 241, 346–353.

    PubMed  CAS  Google Scholar 

  • Havoundjian H., Cohen R. M., Paul S. M., and Skolnick P. (1986) Differential sensitivity of central and peripheral type benzodiazepine receptors to phospholipase A2.J. Neurochem. 42, 804–811.

    Article  Google Scholar 

  • Hill D. R., Bowery N. G., and Hudson A. L. (1984) Inhibition of GABAB receptor binding by guanyl nucleotides.J. Neurochem. 42, 652–657.

    Article  PubMed  CAS  Google Scholar 

  • Holmes G. L., Weber D. A., Kloczko N., and Zimmerman A. W. (1984) Relationship of endocrine function to inhibition of kindling.Dev. Brain Rev. 16, 55–59.

    Article  CAS  Google Scholar 

  • Holzbauer M. (1975) Physiological variations in the ovarian production of 5α-pregnane derivatives with sedative properties in the rat.J. Steroid Biochem. 6, 1307–1310.

    Article  PubMed  CAS  Google Scholar 

  • Holzbauer M. (1976) Physiological aspects of steroids with anesthetic properties.Med. Biol. 54, 227–242.

    PubMed  CAS  Google Scholar 

  • Hunkeler W., Mohler H., Pieri L., Polc P., Bonetti E., Cumin R., Schaffner R., and Haefely W. (1981) Selective antagonists of benzodiazepines.Nature 290, 514–516.

    Article  PubMed  CAS  Google Scholar 

  • Jackson M. B., Lecar H., Mathers D. A., and Barker J. L. (1982) Single channel currents activated by GABA, muscimol, and (-) pentobarbital in cultured mouse spinal neurons.J. Neurosci. 2, 889–894.

    PubMed  CAS  Google Scholar 

  • Karavolas H. J., Bertics P. J., Hodges D., and Rudie N. (1984) Progesterone processing by neuroendocrine structure,Metablissm of Hormonal Steroids in the Neuroendocrine Structures, Celotti F., Naftolin F., and Martini L., eds., Raven Press, New York, 149–170.

    Google Scholar 

  • Kavaliers M. and Wiebe J. P. (1987) Analgesic effects of 3α-hydroxy steroid metabolites of progesterone: possible modes of action.Neuroendocrinology Lett. 9, 177.

    Google Scholar 

  • Klunk W., Kalman B., Ferrendelli J., and Covey D. (1983) Computer assisted modeling of the picrotoxinin and gamma-butyrolactone receptor site.Mol. Pharmacol. 23, 511–518.

    PubMed  CAS  Google Scholar 

  • Korneyev A. Y. (1983) Benzodiazepines stimulate muscimol receptor binding in Ro15 1788 reversible manner.Eur. J. Pharmacol. 90, 227–230.

    Article  PubMed  Google Scholar 

  • Lahti R. A. and Barsuhn C. (1974) The effect of minor tranquilizers on stress induced increases in rat plasma corticosteroids.Psychopharmacologia 35, 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Lambert J. J., Peters J. A., and Cottrell G. A. (1987) Actions of synthetic and endogenous steroids on the GABAA receptor.Trends Pharmacol. Sci. 8, 224–227.

    Article  CAS  Google Scholar 

  • Lawrence L. J., Gee K. W., and Yamamura H. I. (1984) Benzodiazepine anticonvulsant action: gamma-aminobutyric acid-dependent modulation of the chloride ionophore.Biochem. Biophys. Res. Comm. 123, 1130–1137.

    Article  PubMed  CAS  Google Scholar 

  • Lee-Lunndberg, F., Snowman A., and Olsen R. W. (1980) Barbiturate receptor sites are coupled to benzodiazepine receptors.Proc. Natl. Acad. Sci. USA 77, 7468–7472.

    Article  Google Scholar 

  • Lippa A. S., Coupet J., Greenblatt E. N., Klepner C. A., and Beer B. (1979) Synthetic, nonbenzodiazepine ligand for benzodiazepine receptors: A probe for investigating neuronal substrates of anxiety.Pharmacol. Biochem. Behav. 11, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Majewska M. D. (1987) Antagonist-type interaction of glucocorticoids with the GABA receptor-coupled chloride channe.Brain Res. 418, 377–382.

    Article  PubMed  CAS  Google Scholar 

  • Majewska M. D. (1987) Steroids and brain activity.Biochem. Pharmacol. 36, 3781–3788.

    Article  PubMed  CAS  Google Scholar 

  • Majewska M. D. and Schwartz R. D. (1987) Pregnenolone sulfate: an endogenous antagonist of the γ-aminobutyric acid receptor complex in brain.Brain Res. 404, 355–360.

    Article  PubMed  CAS  Google Scholar 

  • Majewska M. D., Bisserbe J. C., and Eskay R. L. (1985) Glucocorticoids are modulators of GABAA receptors in brain.Brain Res. 339, 178–182.

    Article  PubMed  CAS  Google Scholar 

  • Majewska M. D., Harrison N. L., Schwartz R. D., Barker J. L., and Pauls S. M. (1986) Steroid metabolites are barbiturate-like modulators of the GABA receptor.Science (Wash., D. C.)232, 1004–1007.

    Article  PubMed  CAS  Google Scholar 

  • Maksay G. and Simonyi M. (1986) Kinetic regulation of convulsant (TBPS) binding by GABAergic agents.Mol. Pharmacol. 30, 321–328.

    PubMed  CAS  Google Scholar 

  • Martin I. and Candy J. (1978) Facilitation of benzodiazepine binding by NaCl and GABA.Neuropharmacology 17, 993–998.

    Article  PubMed  CAS  Google Scholar 

  • Miller L. G., Greenblatt D. J., Barnhill J. G., Thompson M. L., and Shader R. I. (1988) Modulation of benzodiazepine receptor binding in mouse brain by adrenalectomy and steroid replacement.Brain Res. 446, 314–320.

    Article  PubMed  CAS  Google Scholar 

  • Mohler H. and Okada T. (1978) Properties of gamma-aminobutyric acid receptor binding with (+) [3H]-bicuculline methiodide in rat cerebellum.Mol. Pharmacol. 14, 256–265.

    PubMed  CAS  Google Scholar 

  • Morrow A. L., Sudzak P. D., and Paul S. M. (1987) Steroid hormone metabolites potentiate GABA receptor-mediated chloride ion flux with nanomolar potency.Eur. J. Pharmacol. 142, 483–485.

    Article  PubMed  CAS  Google Scholar 

  • Newmark M. E. and Penry J. K. (1980) Catamenial epilepsy: a review.Epilepsia 21, 281–300.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen M., Gredal O., and Braestrup C. (1979) Some properties of3H-diazepam-displacing activity from human urine.Life Sci. 25, 679–686.

    Article  PubMed  CAS  Google Scholar 

  • Obata T., Yamamura H. I., Malatynska E., Ikeda M., Laird H., Palmer C. J., and Casida J. E. (1988) Modulation of γ-aminobutyric acid stimulated chloride influx by bicycloorthocarboxylates, bicyclophosphorous esters, polychlorocycloalkanes and other cage convulsants.J. Pharmacol. Exp. Ther. 244, 802–806.

    PubMed  CAS  Google Scholar 

  • Olsen R. W. (1982) Druginteractions at the GABA receptor-ionophore complex.Ann Rev. Pharmacol. Toxicol. 22, 245–277.

    Article  CAS  Google Scholar 

  • Olsen R. W., Leeb-Lundberg F., Snowman A., and Stephenson F. A. (1982) Barbiturate interactions with the benzodiazepine-GABA receptor complex in mammalian brain.Pharmacology of Benzodiazepines, Udsin E., Skolnick P., Tallman J. F., Greenblatt D., and Paul S. M., eds., Macmillan, London, pp. 155–163.

    Google Scholar 

  • Ong J., Kerr D. I. B., and Johnston G. A. R. (1987) Cortisol: a potent biphasic modulator at GABAA receptor complexes in the guinea pig ileum.Neurosci. Lett. 82, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Peters J. A., Kirkness E. F., Callachan H., Lambert J. L., and Turner A. J. (1988) Modulation of the GABAA receptor by depressant barbiturates and pregnane steroids.Br. J. Pharmacol. 94, 1257–1269.

    PubMed  CAS  Google Scholar 

  • Pfaff D. W. and McEwen B. S. (1983) Actions of estrogen and progestins on nerve cells.Science (Wash., D. C.)219, 808–814.

    Article  PubMed  CAS  Google Scholar 

  • Rosciszewska D., Buntner B., Guz I., and Zawisza L. (1986) Ovarian hormones, anticonvulsant drugs and seizures during the menstrual cycle in women with epilepsy.J. Neurol. Neurosurg. Psych. 49, 47–51.

    Article  CAS  Google Scholar 

  • Schofield C. N. (1980) Potentiation of inhibition by general anesthetics in neurones of the olfactory cortex in vitro.Pfluegers Arch. 383, 249–255.

    Article  Google Scholar 

  • Schofield P. R., Darlison M. G., Fujita N., Burt D. R., Stephenson F. A., Rodriguez H., Rhee L. M., Ramachandran J., Reale V., Glencorse T. A., Seeburg P. H., and Barnard E. A. (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super family.Nature (Lond.)328, 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz R. D., Jackson J. A., Weigert D., Skolnick P., Paul S. M. (1985) Characterization of barbiturate-stimulated chloride efflux from rat brain synaptoneurosomes.J. Neurosci. 5, 2963–2970.

    PubMed  CAS  Google Scholar 

  • Schwartz R. D., Suzdak P. D., and Paul S. M. (1986) γ-aminobutyric acid (GABA) and barbiturate-mediated36Cl-uptake in rat brain synaptoneurosome: Evidence for rapid densensitization of the GABA receptor-coupledchloride ion channel.Mol. Pharmacol. 30, 419–426.

    PubMed  CAS  Google Scholar 

  • Selye H. (1942) The antagonism between anesthetic steroid hormones and pentamethylenetetrazol (metrazol).J. Lab. Clin. Med. 27, 1051–1053.

    CAS  Google Scholar 

  • Skerritt J. H., Willow M., and Johnston G. A. R. (1982) Diazepam enhancement of low affinity GABA binding to rat brain membranes.Neurosci. Lett. 29, 63–66.

    Article  PubMed  CAS  Google Scholar 

  • Smith S. S., Waterhouse B. D., and Woodward D. J. (1987b) Locally applied progesterone metabolites alter neuronal responsiveness in the cerebellum.Brain Res. Bull 18, 739–747.

    Article  PubMed  CAS  Google Scholar 

  • Smith S. S., Waterhouse B. D., and Woodward D. J. (1987a) Sex steroid effects on extrahypothalamic CNS. II. Progesterone, alone and in combination with estrogen, modulates cerebellar responses to amino acid neurotransmitters.Brain Res. 422, 52–62.

    Article  PubMed  CAS  Google Scholar 

  • Squires R. F., Casida J. E., Richardson M., and Saederup E. (1983) [35S]t-butylbicyclophosphorothionate binds with high affinity to brain specific sites coupled to a gamma-aminobutyric acid-A and ion recognition sites.Mol. Pharmacol. 23, 325–336.

    Google Scholar 

  • Stephenson F. A. (1988) Understanding the GABAA of GABA responses in cultured central neurons.Proc. Natl. Acad. Sci. USA 78, 7180–7184.

    Google Scholar 

  • Strichartz G. R. and Ritchie J. M. (1985) Action of local anestherics on ion channels of excitable tissues.Local Anesthetics, Strichartz G. R., ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Study R. and Barker J. (1981) Diazepam and (-) pentobarbital fluctuation analysis reveals different mechanisms of GABA responses in cultured central neurons.Proc. Natl. Acad. Sci. USA 78, 7180–7184.

    Article  PubMed  CAS  Google Scholar 

  • Tallman J. F., Thomas J. W., and Gallager D. W. (1978) GABAergic modulation of benzodiazepine binding sensitivity.Nature 274, 383–385.

    Article  PubMed  CAS  Google Scholar 

  • Ticku M. K., Ban M., and Olsen R. W. (1978) Binding of [3H]α-dihydropicrotoxinin, a γ-aminobutyric acid synaptic antagonist, to rat brain membranes.Mol. Pharmacol. 14, 391–402.

    PubMed  CAS  Google Scholar 

  • Vogel J. R., Beer B., and Clody D. E. (1971) A simple reliable conflict procedure for testing antianxiety agents.Psychopharmacologia 21, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Wastek G., Speth R., Reisine T., and Yamamura H. I. (1978) The effect of GABA on [3H]flunitrazepam binding in rat brain.Eur. J. Pharmacol. 50, 445–447.

    Article  PubMed  CAS  Google Scholar 

  • Woolley D. E. and Timiras P. S. (1962a) Estrous and circadian periodicity and electroshock convulsions in rats.Am J. Physiol. 202, 379–382.

    PubMed  CAS  Google Scholar 

  • Woolley D. E. and Timiras P. S. (1962b) The gonadbrain relationship: effects of female sex hormones on electroshock convulsions in the rat.Endocrinology 70, 196–209.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gee, K.W. Steroid modulation of the GABA/benzodiazepine receptor-linked chloride lonophore. Mol Neurobiol 2, 291–317 (1988). https://doi.org/10.1007/BF02935636

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02935636

Index Entries

Navigation