Abstract
Vaccination has remained the best method for preventing virus spread. The herpes simplex virus (HSV) candidate vaccines tested till now were mostly purified subunit vaccines and/or recombinant envelope glycoproteins (such as gB and gD). In many experiments performed in mice, guinea pigs and rabbits, clear-cut protection against acute virus challenge was demonstrated along with the reduction of the extent of latency, when established in the immunized host. The immunotherapeutic effect of herpes vaccines seems less convincing. However, introduction of new adjuvants, which shift the cytokine production of helper T-cells toward stimulation of cytotoxic T-cells (TH1 type cytokine response), reveals a promising development. Mathematical analysis proved that overall prophylactic vaccination of seronegative women, even when eliciting 40–60 % antibody response only, would reduce the frequency of genital herpes within the vaccinated population. Even when partially effective, immunotherapeutic vaccination might represent a suitable alternative of chronic chemotherapy in recurrent labial and genital herpes.
Similar content being viewed by others
Abbreviations
- APC:
-
antigen-presenting cell
- CD:
-
cluster of differentiation
- CTL:
-
cytotoxic T-lymphocyte (TC-lymphocyte)
- CNS:
-
central nervous system
- DC:
-
dendritic cell
- E:
-
early (mRNA expression)
- gB, gC, gD, gE, gH:
-
glycoproteins B-H
- HLA:
-
human leukocyte antigen
- HSV:
-
herpes simplex virus
- Hve:
-
herpes virus entry
- i.c.:
-
intracutaneous
- IE:
-
immediate early
- i.m.:
-
intramuscular
- i.n.:
-
intranasal
- ICP:
-
infected cell protein
- IFN:
-
interferon
- IL:
-
interleukin
- LAT:
-
latency-associated transcript
- MHC:
-
major histocompatibility complex
- mRNA:
-
messenger ribonucleic acid
- p.i.:
-
post-infection
- PCR:
-
polymerase chain reaction
- PNS:
-
peripheral nervous system
- PVR:
-
poliovirus receptor
- RT-PCR:
-
reversed transcription PCR
- T-lymphocyte:
-
thymus-dependent lymphocyte
- TCR:
-
T-cell receptor
- TH :
-
helper T-lymphocyte
- TK:
-
thymidine kinase
- TNF:
-
tumor necrosis factor
- UL:
-
unique long HSV DNA segment
- US:
-
unique short HSV DNA segment
- vhs :
-
virion host shutoff
References
Al-Ghandi A., Jennings R., Bentlez H., Potter C.W.: Latent HSV 1 infection in mice immunized with a zwitterionic detergent-extracted HSV 1 antigen preparation.Arch.Virol.108, 19–31 (1989).
Altomare G.F., Pigatto P.D., Polenghi M.M., Germogli R.: Relapsed herpes simplex specific immunotherapy with killed virus.Acta Toxicol.Ther.713, 201–210 (1986).
Aurelian L.: Herpes simplex virus type 2 vaccines: new ground for optimism?Clin.Diagn.Lab.Immunol.11, 437–445 (2004).
Baghian A., Chouljenko V.N., D’Auvergne O., Newman M.J., Baghian S., Kousoulas K.G.: Protective immunity against lethal HSV 1 challenge in mice by nucleic acid-based immunization with herpes simplex virus type 1 genes specifying glycoproteins gB and gD.Virology51, 350–357 (2002).
Balachandran N., Bacchetti S., Rawls W.E.: Protection against lethal challenge of Balb/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2.Infect.Immun.37, 1132–1137 (1982).
Baringer J.R.: Herpes simplex virus infection of nervous tissue in animals and man.Progr.Med.Virol.20, 1–26 (1975).
Ben-Mohamed L., Bertrand G., McNamara C.D., Gras-Masse H., Hammer J., Wechsler S.L., Nesburn A.: Identification of novel immunodominant CD4 Th1-type T-cell peptide epitopes from herpes simplex virus glycoprotein D that confer protective immunity.J.Virol.77, 9463–9473 (2003).
Bernstein D.I., Ashley R.L., Stanberry L.R., Myers M.G.: Detection of asymptomatic herpes simplex infections in animals immunized with subunit HSV glycoprotein vaccines.J.Clin.Microbiol.28, 11–15 (1990).
Bernstein D.I., Aoki F.Y., Tyring S.K., Stanberry L.R., St.Pierre C., Shafran S.D., Leroux-Roels G., Vanherck K., Bollaerts A., Dubin G.: Safety and immunogenicity of glycoprotein D-adjuvanted genital herpes vaccine.Clin.Infect.Dis.40, 1271–1281 (2005).
Blacklaw B.A., Nash A.A.: Immunological memory to herpes simplex virus type 1 glycoproteins B and D in mice.J.Gen.Virol.71, 863–871 (1990).
Bosch D.L., Geerligs H.J., Weijer W.J., Feijlbrief M., Welling G.W., Welling-Wester S.: Structural properties and reactivity of N-terminal synthetic peptides of herpes simplex virus type 1 glycoprotein D by using antipeptide antibodies and group VII monoclonal antibodies.J.Virol.61, 3607–3611 (1987).
Bourne N., Milligan G.N., Schleiss M.R., Bernstein D.I., Stanberry L.R.: DNA immunization confers protective immunity on mice challenged intravaginally with herpes simplex virus type 2.Vaccine14, 1230–1234 (1996).
Bourne N., Pyles R.B., Bernstein D., I., Stanberry L.R.: Modification of primary and recurrent genital herpes in guinea pigs by passive immunization.J.Gen.Virol.83, 2797–2801 (2002).
Bourne N., Bravo F.J., Francotts M., Bernstein D.I., Myers M., Slioui M., Stanberry L.: Herpes simplex virus type 2 glycoprotein D subunit vaccines and protection against genital HSV 1 and HSV 2 disease in guinea pigs.J.Infect.Dis.187, 542–548 (2003).
Broker M., Abel K.J., Kohler R., Hilfenhaus J., Amann E.:Escherichia coli-derived envelope protein gD but not gC antigens of herpes simplex virus protect mice against a lethal challenge with HSV-1 and HSV-2.Med.Microbiol.Immunol.179, 145–149 (1990).
Bryson Y.J., Winter H.S., Gard S.E., Fisher T.J., Stiehm E.R.: Deficiency of immune interferon production by leukocytes in normal newborns.Cell Immunol.55, 191–200 (1980).
Burke R.L., Goldbeck C., Ng P., Stanberry L., Ott G., Van Nest G.: The influence of adjuvant on the therapeutic efficacy of a recombinant genital herpes vaccine.J.Infect.Dis.170, 1110–1119 (1994).
Cantin E.M., Puga A., Notkins A.L.: Molecular biology of herpes simplex virus latency, pp. 172–178 in A.L. Notkins, M.B.A. Oldstone (Eds):Concepts in Viral Pathogenesis. Springer-Verlag, Berlin-Heidelberg 1984.
Cantin E.M., Eberle R., Baldick J.L., Moss B., Willey D.E., Notkins A.L., Openshaw H.: Expression of herpes simplex virus glycoprotein B by a recombinant vaccinia virus and protection of mice against lethal herpes simplex virus infection.Proc.Nat.Acad.Sci.USA84, 5908–5912 (1987).
Cappel R., Sprecher S., Cuyper de F., De Brakeleer J.: Clinical efficacy of a herpes simplex subunit vaccine.J.Med.Virol.16, 137–145 (1985).
Caselli E., Balboni P., Incorvaia C., Argnani R., Parmeggiani F., Cassai E., Manservigi R.: Local and systemic inoculation of DNA or protein gBs-based vaccines induce protective immunity against rabbit ocular infection.Vaccine19, 1225–1231 (2001a).
Caselli E., Grandi P., Argnani R., Balboni P.G., Selvatici R., Manservigi R.: Mice genetic immunization with plasmid DNA encoding a secreted form of HSV-1 gB induces a protective immune response against herpes simplex virus type 1 infection.Intervirology44, 1–7 (2001b).
Chan W.L., Lukig M.L., Liew F.Y.: Helper T cells induced by and immunopurified herpes simplex virus type 1 115-kDa glycoprotein gB protect mice against HSV-1 infection.J.Exp.Med.162, 1304–1318 (1985).
Chapsal J.M., Pereira L.: Characterization of epitopes on native and denaturated forms of herpes simplex virus glycoprotein B.Virology164, 427–434 (1988).
Chen S.H., Kramer M.F., Schaffer P.A., Coen D.M.: A viral function represses accumulation of transcripts from productive cycle genes in mouse ganglia latently infected with herpes simplex virus.J.Virol.71, 5878–5884 (1997).
Chen S.H., Graber D.A., Schaffer P.A., Knipe D.M., Coen D.M.: Persistent elevated expression of cytokine transcripts in ganglia latently infected with herpes simplex virus in the absence of ganglionic replication or reactivation.Virology278, 207–216 (2000).
Chou J., Kern E.R., Whitley R.J., Roizman B.: Mapping of herpes simplex virus 1 neurovirulence to 34.5 gene nonessential for growth in culture.Science250, 1262–1266 (1990).
Cocchi F., Menom L., Dubreuil P., Lopez M., Campadelli-Fiume G.: Cell-to-cell spread of wild type herpes simplex virus type 1, but not of syncytial strains, is mediated by the immunoglobulin-like receptors that mediate virion entry, nectin 1 (PRRR1/HveC/HlgR) and nectin 2 (PRR2/HveB).J.Virol.74, 3909–3917 (2000).
Cohen G.H., Isola V.J., Kuhns J., Berman P.W., Eisenberg R.J.: Localization of discontinuous epitopes of herpes simplex virus glycoprotein D: use of a nondenaturing (“native” gel) system of polyacrylamide gel electrophoresis coupled with Western blotting.J.Virol.60, 157–166 (1987).
Coles R.M., Mueller S.N., Heath S.N., Carbone F.R., Brooks A.G.: Progression of armed lymph node to spleen shortly after localized infection with herpes simplex virus 1.J.Immunol.168, 834–838 (2002).
Cose S.C., Kelly J.M, Carbone F.R.: Characterization of a diverse primary herpes simplex virus type 1 gB-specific cytotoxic T-cell response showing a preferential Vβ bias.J.Virol.69, 5849–5853 (1995).
Cunningham A.L., Noble J.R.: Role of keratinocytes in human recurrent herpetic lesions. Ability to present herpes simplex virus antigen and act as targets for T lymphocyte cytotoxicityin vitro.J.Clin.Invest.83, 490–496 (1989).
DaCosta X.J., Bourne N., Stanberry L.R., Knipe D.M.: Construction and characterization of a replication defective herpes simplex virus 2 ICP8 mutant strain and its use in immunization studies in a guinea pig model of genital disease.Virology232, 1–12 (1997).
De Maria A., Tundo P., Romano A., Grima P.: Anti-HSV 1 herpes vaccination by Lupidon H: preliminary results.Adv.Exp.Med.Biol.371b, 1599–1600 (1995).
Deshpande S.P., Kumaraguru U., Rouse B.T.: Why do we lack an effective vaccine against herpes simplex virus infections?Microb.Infect.2, 973–978 (2000).
Dix R.D., Pereira L., Baringer J.R.: Use of uniform monoclonal antibody directed against herpes simplex virus glycoproteins to protect against acute virus-induced neurological disease.Infect.Immun.34, 192–199 (1981).
Duerst R.J., Morrison L.A.: Innate immunity to herpes simplex virus type 2.Viral Immunol.16, 475–489 (2003).
Dundarov S., Andonov P., Bakalov B., Nechev K., Tomov C.: Immunotherapy with inactivated polyvalent herpes vaccines.Develop.Biol.Standard.52, 351–358 (1982).
Eisenberg R.J., Long D., Ponce L.M., Matthews J.T., Spear P.G., Gibson M.G., Lasky L.A., Berman P., Golub E., Cohen G.H.: Localization of epitopes of herpes simplex virus type 1 glycoprotein D.J.Virol.53, 634–644 (1985).
Efstathiou S., Minson A., Field H., Anderson J.R., Wildy P.: Detection of herpes simplex virus-specific DNA sequences in latently infected mice and humans.J.Virol.57, 446–455 (1986).
Erturk M., Jennings R., Hockley D., Potter C.W.: Antibody to herpes simplex type 1 antigen immune-stimulating complex preparations.J.Gen.Virol.70, 2149–2155 (1989).
Erturk M., Philipotts R.J., Welch M.J., Jennings R.: Efficacy of HSV-1 ISCOM vaccine in the guinea pig model of HSV-2 infection.Vaccine9, 728–733 (1991).
Fareell H.E., McLean C.S., Harley C., Efstathiou S., Inglis S., Minson A.C.: Vaccine potential of a herpes simplex virus type 1 with an essential glycoprotein deleted.J.Virol.68, 927–932 (1994).
Fló J., Beatriz-Perez A., Tisminetzky S., Baralle F.: Superiority of intramuscular route and full length glycoprotein D vaccination against herpes simplex 2. Enhancement of protection by the codelivery of the GM-CSF gene.Vaccine18, 3242–3253 (2000).
Fuller O.A., Spear P.G.: Anti-glycoprotein D antibodies that permit adsorption but block infection by herpes simplex virus 1 prevent virion-cell fusion at the cell surface.Proc.Nat.Acad.Sci.USA84, 5454–5458 (1987).
Forrester A., Farell H., Wilkinson G., Kaye J., Davis-Poynter N., Minson T.: Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted.J.Virol.66, 341–348 (1992).
Frye T.D., Chiou H.C., Hull B.E., Bigley N.J.: The efficacy of a DNA vaccine encoding herpes simplex virus type 1 (HSV-1) glycoprotein D in decreasing ocular disease severity following corneal HSV-1 challenge.Arch.Virol.147, 1747–1759 (2002).
Gallichan W.S., Woolstencroft R.N., Guarasci T., McCluskie M.J., Davis H.L., Rosenthal K.L.: Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract.J.Immunol166, 3451–3457 (2001).
Garnett G.P., Dubin G., Slaoui M., Darcis T.: The potential epidemiological impact of a genital herpes vaccine for women.Sex.Transm.Infect.80, 24–29 (2004).
Garber D.A., Schaffer P.A., Knipe D.M.: A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1.J.Virol.71, 5885–5893 (1997).
Gebhard R.J., Zhu J., Cao X., Minnick J., Araneo B.A.: DNA immunization utilizing a herpes simplex virus type 2 myogenic DNA vaccine protects mice from mortality and prevent genital herpes.Vaccine18, 1837–1846 (2000).
Ghiasi H., Kaiwar R., Nesburn A.B., Slanina S., Wechsler S.: Baculovirus-expressed glycoprotein E of herpes simplex virus type 1 protects mice against lethal intraperitoneal challenge and lethal ocular challenge.Virology188, 469–476 (1992).
Ghiasi H., Cai S., Perng G.C., Nesburn A.B., Wechsler S.L.: Both CD4 and CD8 T cells are involved in protection against HSV 1 induced corneal scarring.Brit.J.Ophthalmol.84, 408–412 (2000).
Hall M.J., Katrak K.: The quest for herpes simplex vaccine: background and recent developments.Vaccine4, 138–150 (1986).
Hallford W.P., Gehardt B.M., Carr D.J.: Persistent cytokine expression in trigeminal ganglion latently infected with herpes simplex virus type 1.J.Immunol.157, 3542–3549 (1996).
Harandi A.M., Svennerholm B., Holmgren J., Erickson K.: Protective vaccination against genital herpes simplex type 2 infection in mice is associated with a rapid induction of local IFN-γ dependent RANTES production following a vaginal viral challenge.Am.J.Reprod.Immunol.46, 420–424 (2001).
Herold B.C., Visalli R.J., Susmarski N., Brandt C.R., Spear P.G.: Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B.J.Gen.Virol.75, 1211–1222 (1994).
Higgins T.J., Herold K.M., Arnold R.L., McElhiney S.P., Shroff K.E., Pachuk C.J.: Plasmid DNA-expressed secreted and non-secreted forms of herpes simplex virus glycoprotein D2 induce different types of immune responses.J.Infect.Dis.182, 1311–1320 (2000).
Highlander S.L., Sutherland S.L., Gage P.J., Johnson D.C., Levine M., Glorioso J.C.: Neutralizing monoclonal antibodies specific for herpes simplex virus glycoprotein D inhibit penetration.J.Virol.61, 3356–3364 (1987).
Hilfenhaus J., Moser H.: Prospects for a subunit vaccine against herpes simplex virus infections.Behr.Inst.Mitt.69, 45–56 (1981).
Hill A., Jugovich P., York I., Russ G., Bennink J., Yewdell J., Ploegh H., Johnson D.: Herpes simplex virus turns off the TAP to evade host immunity.Nature375, 411–415 (1995).
Hirsch M.S.B., Zisman B., Allison A.G.: Macrophages and age dependent resistance to herpes simplex virus in mice.J.Immunol.104, 1160–1165 (1970).
Hosken N.A.: Development of a therapeutic vaccine for HSV 2.Vaccine23, 2395–2398 (2005).
Howes E.L., Taylor W., Mitchison N.A., Simpson E.: MHC matching shows that at least two T cell subsets determine resistance to HSV.Nature277, 67–68 (1979).
Immuno Report: A Candidate Herpes Vaccine: HSV 1 Strain HSZP Subunit Vaccine, Adjuvanted. Immuno AG, Wien (Austria) 1995.
Inoue Y., Ohashi Y., Shimomura Y., Manabe R., Yamada M., Ueda S., Kato S.: Herpes simplex virus glycoprotein D. Protective immunity against murine herpetic keratitis.Invest.Ophthalmol.Visual Sci.31, 411–418 (1990).
Inoue T., Inoue Y., Nakamura Y., Yoshida A., Inoue Y., Tano Y., Shimomura Y., Pujisawa Y., Aono A., Hayashi K.: The effect of immunization with herpes simplex virus glycoprotein D fused with interleukin 2 against murine herpetic keratitis.Japan.J.Ophthalmol.46, 370–376 (2001).
Isola V.J., Eisenberg R.J., Siebert G.R., Heilman C.J., Wilcox W.C., Cohen G.H.: Fine mapping of antigenic site II of herpes simplex virus glycoprotein D.J.Virol.63, 2325–2334 (1989).
Jacobson J.G., Ruffner K.L., Kosz-Vnenchak M., Hwang C.B.C., Wobbe K.K., Knipe D.M., Coen D.M.: Herpes simplex virus thymidine kinase and specific stages of latency in murine trigeminal ganglia.J.Virol.67, 6903–6908 (1993).
Jennings S.R., Rice P.L., Kloszewski E.D., Anderson R.W., Thompson D.L., Tevethia S.S.: Effect of herpes simplex virus types 1 and 2 on surface expression of class I major histocompatibility complex antigens on infected cells.J.Virol.56, 757–766 (1985).
Johnson D.C., Hill A.B.: Herpesvirus evasion of the immune system.Curr.Topics Microbiol.Immunol.323, 149–177 (1998).
Johnson R.M., Laski D.W., Fitch F.W., Spear P.G.: Herpes simplex virus glycoprotein D is recognized as antigen by CD4+ and CD8+ T lymphocytes from infected mice.J.Immunol.145, 702–710 (1990).
Kavaklova L., Dundarov S., Andonov P., Bakalov B., Dundarova D., Brodvarova I.: Preparation and efficacy of antiherpes type 1 and 2 subunit vaccines.Acta Virol.30, 402–410 (1986).
Keadle T.L., Layock K.A., Morris K.A., Leib D.A., Morrison L.A., Pepose J.S., Stuart P.M.: Therapeutic vaccination withvhs minus herpes simplex virus reduces the severity of recurrent herpetic stromal keratitis in mice.J.Gen.Virol.83, 2361–2365 (2002).
Kern A.B., Schiff B.L.: Vaccine therapy in recurrent herpes simplex.Arch.Dermatol.89, 844–845 (1964).
Kino Y., Eto T., Nishiyama K., Ohtono N., Mori R.: Immunogenicity of purified glycoprotein B of herpes simplex virus.Arch.Virol.89, 69–80 (1986).
Klein R.J.: Initiation and maintenance of latent herpes simplex virus infections: the paradox of perpetual immobility and continuous movement.Rev.Infect.Dis.7, 21–30 (1985).
Klein R.J., Buimovici-Klein E., Moser H., Moucha R., Hilfenhaus J.: Efficacy of a virion envelope herpes simplex virus vaccine against experimental skin infections in hairless mice.Arch.Virol.68, 73–81 (1981).
Koelle D.M., Chen H.B., Gavin M.A., Wald A., Kwok W.W., Corey L.: CD8 CTL from genital herpes lesions: recognition of viral tegument and immediate early proteins and lysis of infected cutaneous cells.J.Immunol.166, 4049–4058 (2001).
Kohl S., Harmon M.W.: Human neonatal leukocyte interferon production and natural killer cytotoxicity in response to herpes simplex virus infected cells.J.Interferon Res.3, 461–463 (1983).
Kramer M.F., Coen D.M.: Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus.J.Virol.69, 1389–1397 (1995).
Kuklin N., Daheshia M., Karem K., Manickan E., Rouse B.T.: Induction of mucosal immunity against herpes simplex virus by plasmid DNA immunization.J.Virol.71, 3138–3145 (1997).
Kumel G., Kaerner H.C., Schroder C.H., Glorioso J.C.: Passive immune protection by herpes simplex virus-specific monoclonal antibodies and monoclonal antibody resistant mutants altered in pathogenicity.J.Virol.56, 930–937 (1985).
Kutinova L., Benda R., Kalos Z., Dbalý V., Votruba T., Kvíčalová E., Petrovská P., Doutlík S., Kamínková J., Domorazková E.: Placebo controlled study with subunit herpes simplex virus vaccine in subjects suffering from frequent herpetic recurrences.Vaccine6, 223–228 (1988).
Lachmann R.H., Sadarangani M., Atkinson H.R., Efstathiou S.: An analysis of herpes simplex virus gene expression during latency establishment and reactivation.J.Gen.Virol.80, 1271–1282 (1999).
Larsen H.S., Russel R.G., Rouse B.T.: Recovery from lethal herpes simplex virus type 1 infection is mediated by cytotoxic lymphocytes.Infect.Immun.41, 197–204 (1983).
Lasky L.A., Dowbenko D., Simonsen C.C., Berman P.W.: Protection of mice from lethal herpes simplex virus infection by vaccination with a secreted form of cloned glycoprotein D.Biotechnology2, 527–532 (1984).
Lavelle E.C., Grant G., Pusztai A., Pfuller U., Leavy O., McNeela E., Mills H.G., Hagan D.T.: Mistloe lectins enhance immune responses to intranasally co-administered herpes simplex virus glycoprotein D2.Immunology107, 268–274 (2002).
Lee H.H., Cha S.C., Jang D.J., Lee J.K., Cho D.W., Kim Y.S., Uh H.S., Kim S.Y.: Immunization with combined HSV-2 glycoproteins B2:D2 gene DNAs: protection against lethal intravaginal challenges in mice.Virus Genes25, 179–188 (2002).
Lee S., Gierynska M., Eo S.K., Kuklin N., Rouse B.T.: Influence of DNA encoding cytokines on systemic and mucosal immunity following genetic vaccination against herpes simplex virus.Microbes Infect.5, 571–578 (2003).
Liu T., Tang Q., Hendricks R.L.: Inflammatory infiltration of the trigeminal ganglion after herpes simplex virus type 1 corneal infection.J.Virol.70, 264–271 (1996).
Liu T., Khanna K.M., Chen X.P., Fink J.D., Hendricks R.L.: CD8+ T cells can block herpes simplex virus type 1 reactivation from latency in sensory neurons.J.Exp.Med.191, 1459–1466 (2000).
Long D., Madara T., Ponce de Leon M., Cohen G.H., Montgomery P.C., Eisenberg R.J.: Glycoprotein D protects mice against lethal challenge with herpes simplex virus types 1 and 2.Infect.Immun.37, 761–764 (1984).
Manservigi R., Grossi M.P., Gualandri R., Balboni P.G., Marchini P.G., Rotola A., Rimessi P., Diluca D., Barbanti-Brodano G.: Protection from herpes simplex virus type 1 lethal and latent infections by secreted recombinant glycoprotein B constitutively expressed in human cells with a BK virus episomal vector.J.Virol.64, 431–436 (1990).
Manservigi R., Boreo A., Argnani R., Caselli E., Zucchini S., Miriagu V., Mavromara P., Cilli M., Grossi M.P., Balboni V., Cassai E.: Immunotherapeutic activity of a recombinant combined gB-gD-gE vaccine against recurrent HSV 2 infections in a guinea pig model.Vaccine23, 865–872 (2005).
Marlin S.D., Highlander S.L., Holland T.C., Levine M., Glorioso J.C.: Antigenic variation (mar mutations) in herpes simplex virus glycoprotein B can induce temperature-dependent alterations in gB processing and virus production.J.Virol.59, 142–153 (1986).
Martin S., Rouse B.T.: The mechanimsm of antiviral immunity induced by vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D clearance of local infection.J.Immunol.138, 3431–3437 (1987).
Martin S., Courtney R.J., Fowler G., Rouse B.T.: Herpes simplex virus type 4 specific cytotoxic T lymphocytes recognize virus nonstructural proteins.J.Virol.62, 1359–1370 (1989).
McClements W.L., Armstrong M.E., Keys R.D., Liu M.A.: The prophylactic effect of immunization with DNA encoding herpes simplex virus glycoproteins on HSV-induced disease in guinea pigs.Vaccine15, 857–860 (1997).
McDermott M.R., Goldsmith C.H., Rosenthal K.S., Braus L.J.: T lymphocytes in the genital lymph nodes protect mice from intravaginal infection with herpes simplex virus type 2.J.Infect.Dis.159, 460–466 (1989).
McLaughlin-Taylor E., Willey D.E., Cantin E.M., Eberle R., Moss B., Openshaw H.: A recombinant vaccinia virus expressing herpes simplex virus type 1 glycoprotein B induces cytotoxic T lymphocytes in mice.J.Gen.Virol.69, 1731–1734 (1988).
McLean C.S., Ertirk M., Jennings R.: Protective vaccination against primary and recurrent primary disease caused by herpes simplex virus type 2 using a genetically disabled HSV 1.J.Infect.Dis.170, 1100–1109 (1994).
Meignier B., Jourdier T.M., Norrild B., Roizman B.: Immunization of experimental animals with reconstituted glycoprotein mixtures of herpes simplex virus 1 and 2: protection against challenge with virulent virus.J.Infect.Dis.155, 921–930 (1987).
Mertz G.J., Ashley R., Burke R.I., Benedetti J., Critchlow C., Jones C.C., Corey L.: Double blind placebo controlled trial of a herpes simplex virus type 2 glycoprotein vaccine in persons at high risk for genital herpes infection.J.Infect.Dis.161, 653–660 (1990).
Mester J.C., Rouse B.T.: The mouse model and understanding immunity to herpes simplex virus.Rev.Infect.Dis.13, 935–945 (1991).
Mester J.C., Glorioso J.C., Rouse B.T.: Protection against the zosteriform spread of herpes simplex virus glycoproteins.J.Infect.Dis.163, 263–269 (1990).
Metcalf J.F., Whitley R.F.: Protective immunity against herpetic ocular disease in an outbred mouse model.Curr.Eye Res.6, 167–171 (1987).
Milligan G.N., Bernstein D.I.: Analysis of herpes simplex virus-specific T cells in the murine female genital tract following genital infection with herpes simplex virus type 2.Virology212, 481–489 (1995).
Mishkin E.M., Fahey J.R., Kino Y., Klein R.J., Abramovitz A.S., Mento S.J.: Native herpes simplex virus glycoprotein D vaccine: immunogenicity and protection in animal model.Vaccine9, 147–153 (1991).
Mohamedi S.A., Heath A.W., Jennings H.R.: A comparison of oral and parenteral routes for therapeutic vaccination with HSV-2 ISCOM in mice: cytokine profiles, antibody responses and protection.Antiviral Res.49, 83–99 (2001).
Morrison L.A., Knipe D.M.: Mechanisms of immunization with a replication-defective mutant of herpes simplex virus 1.Virology220, 402–413 (1996).
Mossman K.L., Safran H.A., Smiley J.R.: Herpes simplex virus ICP0 mutants are hypersensitive in interferon.J.Virol.74, 2052–2056 (2000).
Mueller S.N., Jones C.M., Smith C.M., Heath W.R., Carbone F.R.: Rapid cytotoxic lymphocyte activation in the draining lymph nodes after cutaneous herpes simplex virus infection as a result of early antigen presentation and not the presence of virus.J.Exp.Med.195, 651–656 (2002).
Mueller S.N., Jones C.M., Chen W., Kawaika Y., Castrucci M.R., Heath W.R., Carbone F.R.: The early expression of glycoprotein B from herpes simplex virus can be detected by antigen-specific CD8/T cells.J.Virol.77, 2445–2451 (2003).
Muggeridge M.I., Wu T.T., Johnson D.C., Glorioso J.C., Eisenberg R., Cohen G.H.: Antigenic and functional analysis of a neutralization site of HSV-1 glycoprotein D.Virology174, 375–387 (1990).
Myers M.G., Bernstein D., Harrison C.J., Stanberry L.R.: Herpes simplex virus glycoprotein treatment of recurrent genital herpes reduces cervicovaginal virus shedding in guinea pigs.Antiviral Res.10, 83–88 (1988).
Nagafuchi S., Hayashida I., Higa K., Wada T., Mori T.: Role of lyt 1 positive immune T cells in recovery from herpes simplex virus infection in mice.Microbiol.Immunol.26, 359–362 (1982).
Nash A.: Comentary. T cells and the regulation of herpes simplex virus latency and reactivation.J.Exp.Med.191, 1455–1457 (2000).
Nash A.A., Phelan J., Wildy P.: Cell mediated immunity in herpes simplex virus-infected mice: H-2 mapping of the delayed type hypersensitivity response and the antiviral T cell response.J.Immunol.126, 1260–1262 (1981).
Nash A.A., Gell P.G.H.: Membrane phenotype of murine effector and suppressor T cells involved in delayed hypersensitivity and protective immunity to herpes simplex virus.Cell Immunol.75, 348–355 (1983).
Nash A.A., Jayashuria A., Phelan J., Cobbold S.P., Waldmann H., Prospero T.: Different roles for L3T4+ and Lyt-2+ cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system.J.Gen.Virol.68, 825–833 (1987).
Nass P.H., Elkins K.L., Weir J.P.: Protective immunity against herpes simplex virus generated by DNA vaccination compared to natural infection.Vaccine19, 1538–1546 (2001).
Nguyen L.H., Knipe D.M., Finberg R.W.: Replication defective mutants of herpes simplex virus induce cellular immunity and protect against lethal HSV infection.J.Virol.66, 7067–7072 (1992).
Novak E.J., Maseqicz S.A., Liu A.W., Lernmark A., Kwok W.W., Nepom G.T.: Activated human epitope specific T cells identified by class II tetramers reside within a CD4 high proliferating subset.Internat.Immunol.13, 799–800 (2000).
Oakes J.E., Lausch R.N.: Monoclonal antibodies suppress replication of herpes simplex virus type 1 in trigeminal ganglia.J.Virol.51, 656–661 (1984).
Osorio Y., Cohen J., Ghiasi H.: Improved protection from primary ocular HSV 1 infection and establishment of latency using multigenic DNA vaccines.Invest.Ophthalm.Visual Sci.45, 506–514 (2004).
Paine T.F.: Latent herpes simplex infection in man.Bact.Rev.28, 472–479 (1964).
Parr M.B., Kepple L., McDermott M.R., Drew M.D., Bozzola J.J., Parr E.L.: A mouse model for studies of mucosal immunity to vaginal infection by herpes simplex virus type 2.Lab.Invest.70, 369–380 (1994).
Pereira L., Ali M., Kousoulas K., Huo B., Banks T.: Domain structure of herpes simplex virus 1 glycoprotein B: neutralizing epitopes map in regions of continuous and discontinues residues.Virology172, 11–24 (1989).
Posavad C.M., Huang M.L., Barey S., Koelle D.M., Corey L.: Long term persistence of herpes simplex virus-specific CD8 cytotoxic lymphocytes with frequently recurring genital herpes.J.Immunol.165, 1146–1152 (2000).
Preston C.M.: Repression of viral transcription during herpes simplex virus latency.J.Gen.Virol.81, 1–9 (2000).
Rajčáni J.: DNA regions and genes determining the virulence of herpes simplex virus.Acta Virol.36, 208–222 (1992).
Rajčáni J., Ďurmanová V.: Early expression of herpes simplex virus proteins and reactivation of latent infection.Folia Microbiol.45, 7–28 (2000).
Rajčáni J., Szántó J.: Persistent and latent infections with herpes simplex virus. (In Slovak)Biol.Listy41, 161–171 (1976).
Rajčáni J., Vojvodová A.: The role of herpes simplex virus glycoproteins in the virus replication cycle.Acta Virol.42, 103–118 (1998).
Rajčáni J., Čiampor F., Sabó A., Libíková H., Rosenbergová M.: Activation of latent herpesvirus hominis in explants of rabbit trigeminal ganglia: the influence of immune serum.Arch.Virol.53, 55–69 (1977).
Rajčáni J., Kutinová L., Vonka V.: Restriction of latent herpes virus infection in rabbits immunized with a subviral herpes simplex virus vaccine.Acta Virol.24, 183–193 (1980).
Rajčáni J., Matis J., Kúdelová M., Leško J., Reichel M., Fuchsberger N., Leššo J.: A simple novel procedure for preparation of herpes virus subunit vaccine.Acta Virol.32, 317–328 (1988).
Rajčáni J., Herget U., Košťál M., Kaerner H.C.: Latency competence of herpes simplex virus strains ANG, ANGpath and their gC and gE mutants.Acta Virol.34, 477–486 (1990).
Rajčáni J., Sabó A., Mucha V., Compel P., Košťál M.: Herpes simplex type 1 subunit vaccine not only protects against lethal virus challenge, but also restricts latency and reactivation.Acta Virol.39, 37–49 (1995).
Rajčáni J., Moško T., Režuchová I.: Current developments in viral DNA vaccines: shall they solve the unsolved?Rev.Med.Virol.15, 1–23 (2005).
Rector J.T., Lausch R.N., Oakes J.E.: Use of monoclonal antibodies for analysis of antibody dependent immunity to ocular herpes simplex virus type 1 infection.Infect.Immun.38, 168–174 (1982).
Režuchová I., Kúdelová M., Ďurmanová V., Vojvodová A., Košovský J., Rajčáni J.: Transcription at carly stages of herpes simplex virus infection and during reactivation.Intervirology46, 25–34 (2003).
Roberts P.L., Duncan B.E., Raybold G.J., Watson D.H.: Purification of herpes simplex virus glycoproteins B and C using monoclonal antibodies and their ability to protect mice against lethal challenge.J.Gen.Virol.66, 1073–1085 (1985).
Rock D.L., Nesburn A.B., Ghiasi H., Ong J., Lewis T.L., Lockensgrad J.R., Wechsler S.L.: Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1.J.Virol.61, 3280–3286 (1987).
Rogers J.V., Bigley N.J., Chiou H.C., Hull B.E.: Targeted delivery of DNA encoding herpes simplex virus type-1 glycoprotein D enhances the cellular response to primary viral challenge.Arch.Dermatol.Res.292, 542–549 (2000a).
Rogers J.V., Hull B.E., Fink P.S., Chiou H.C., Bigley N.J.: Murine response to DNA encoding herpes simplex virus type-1 glycoprotein D targeted to the liver.Vaccine18, 1522–1530 (2000b).
Roizman B., Knipe D.M.: Herpes simplex viruses and their replication, pp. 2399–2460 in D.M. Knipe, P.M. Howley (Eds):Fields Virology, 4th ed. Lippincott-Williams & Wilkins, Philadelphia-Baltimore-New York-London-Buenos Airees-Hong Kong-Sydney-Tokyo 2001.
Rooney J.F., Eohlenberg C.H., Cremer K.J., Moss B., Notkins A.L.: Immunization with a vaccinia virus recombinant expressing herpes simplex virus glycoprotein D: long-term protection and effect of revaccination.J.Virol.62, 1530–1534 (1988).
Rouse B., Gierynska M.: Immunity to herpes simplex virus: a hypothesis.Herpes8 (Suppl. 1), 2–5 (2001).
Rouse B.T., Nair S., Rouse R.J., Yu Z., Kuklin N., Karem K., Manickan M.: DNA vaccines and immunity to herpes simplex virus.Curr.Topics Microbiol.Immunol.226, 69–78 (1998).
Salio M., Cella M., Suter M., Lanzavieccha A.: Inhibition of dendritic cell maturation by herpes simplex virus.Eur.J.Immunol.29, 3245–3253 (1999).
Sanches-Pescador L., Burke R.L., Ou G., Van Nest G.: The effect of adjuvants on the efficacy of a recombinant herpes simplex virus glycoprotein vaccine.J.Immunol.141, 1720–1727 (1988).
Sander G., Sander U.: Untersuchung einer Subunit Vakzine an der rezidivierenden kutanen Herpes simplex Virus Typ I Infektion der Maus.Diplomarbeit. Institut für Medizinische Mikrobiologie, Medizinische Akademie Erfurt, Erfurt 1991.
Schneweis K.E., Gruber J., Hilfenhaus J., Moslein A., Kayser M., Wolff M.H.: The influence of different modes of immunization on the experimental genital herpes simplex virus infection in mice.Med.Microbiol.Immunol.169, 269–279 (1981).
Sciammas R., Johnson R.M., Sperling A.I., Brady W., Linsley P.S., Spear P.G., Fitch F.W., Bluestone J.A.: Unique antigen recognition by herpes specific TCR-γ/δ cell.J.Immunol.152, 5392–5397 (1994).
Scriba M.: Persistence of herpes simplex virus (HSV) infection in ganglia and peripheral tissues of guinea pigs.Med.Microbiol.Immunol.169, 91–96 (1981).
Scriba M.: Animal studies on the efficacy of vaccination against recurrent herpes.Med.Microbiol.Immunol.171, 33–42 (1982).
Shimeld C.J., Whiteland J.J., Williams N.A., Easty D.I., Hill T.J.: Cytokine production in the nervous system of mice during acute and latent infection with herpes simplex virus type 1.J.Gen.Virol.78, 3317–3325 (1997).
Simmons A., Tscharke D.: Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications and the fate of virally infected neurons.J.Exp.Med.175, 1337–1344 (1992).
Simons A.A., Nash A.A.: Role of antibody in primary and recurrent herpes simplex virus infection.J.Virol.53, 944–948 (1985).
Sin J.I., Kim J.J., Arnold R.L., McCallus D., Pachuk C., McElhiney S.P., Wolf M.W., Pompa de Bruin S.J., Higgins T.J., Ciccarelli R.B., Weiner D.B.: IL-12 gene as a DNA vaccine adjuvant in a herpes mouse model: IL-12 enhances Th1-type CD4+ T cell-mediated protective immunity against herpes simplex virus-2 challenge.J.Immunol.162, 2912–2921 (1999).
Sin J., Kim J.J., Pachuk C., Satishchadran C., Weiner D.B.: DNA vaccines encoding interleukin-8 and RANTES enhance antigen-specific Th1-type CD4(+) T-cell-mediated protective immunity against herpes simplex virus type 2in vivo.J.Virol.74 11173–11180 (2000).
Singh M., Carlson J.R., Briones M.: A comparison of biodegradable microparticles and MF59 as systematic adjuvants for recombinant gD from HSV 2.Vaccine16, 1822–1827 (1998).
Skinner G.R., Buchan A., Hartley C.E., Turner S.P., Williams D.R.: The preparation efficacy and safety of antigenoid vaccine NFU1(S-L+) MRC toward prevention of herpes simplex virus infections in human subjects.Med.Microbiol.Immunol.169, 39–45 (1980).
Skinner G.R., Woodman C., Hartley C., Buchan A., Fuller A., Wiblin C., Wilkins G., Melling J.: Early experience with antigenoid vaccine AcNFU1 (S−) MRC towards prevention and modification of herpes genitalis.Develop.Biol.Standard.52, 333–344, (1982).
Šlichtová V., Kutinová L., Vonka V.: Immunogenicity of a subviral herpes simplex type 1 preparation: reduction of recurrent disease in mice.Arch.Virol.71, 75–78 (1982).
Smith C.M., Belz G.T., Wilson N.S., Villadangos J.A., Shortman K., Carbone F.R., Heath W.R.: Cutting edge: conventional CD8α+ dendritic cells are preferentially involved in CTL priming after footpad infection with herpes simplex virus I.J.Immunol.1, 4437–4440, (2003).
Spear P.G., Eisenberg R.J., Cohen G.H.: Three classes of cell surface receptors for alphaherpesvirus entry.Virology275, 1–5 (2000).
Speck P., Simmons A.: Precipitous clearance of herpes simplex virus antigens from the peripheral nervous systems of experimentally infected C57BL/6 mice.J.Gen.Virol.79, 561–564 (1998).
Spivack J.G., Fraser N.W.: Expression of herpes simplex virus type 1 latency-associated transcripts in the trigeminal ganglia of mice during acute infection and reactivation of latent infection.J.Virol.62, 1479–1485 (1988).
Stanberry L.R.: Herpes simplex virus vaccines.Semin.Pediatr.Infect.Dis.2, 178–185 (1991a).
Stanberry L.R.: Subunit viral vaccines: therapeutic and prophylactic uses, pp. 309–341 in I. Aurelian (Ed.):Herpesviruses, Immune System and AIDS. Kluwer Academic Publishers, Boston 1991b.
Stanberry L.R.: The pathogenesis of herpes simplex virus infections, pp. 31–48 in L.R. Stanberry (Ed.):Genital and Neonatal Herpes. John Wiley & Sons, Chichester 1996.
Stanberry L.R.: Genital and perinatal herpes simplex virus infections: prophylactic vaccines, pp. 187–216 in L.R. Stanberry, D.I. Bernstein (Eds):Sexually Transmitted Diseases, Vaccines, Prevention and Control. Academic Press, London 2000.
Stanberry L.R.: Clinical trials of prophylactic and therapeutic herpes simplex virus vaccines.Herpes11 (Suppl. 3), 161A-169A (2004).
Stanberry L.R., Bernstein D.I.: Pathogens and vaccines, pp. 185–457 in L.R. Stanberry, D.I. Bernstein (Eds):Sexually Transmitted Diseases, Vaccines, Prevention and Control. Academic Press, London 2000.
Stanberry L.R., Bernstein D.I., Burke R.L., Pachl C., Myers M.G.: Recombinant herpes simplex virus glycoproteins: protection against initial and recurrent genital herpes.J.Infect.Dis.155, 914–920 (1987).
Stanberry L.R., Myers M.G., Stephanopoulos D.I., Burke R.L.: Preinfection prophylaxis with herpes simplex virus glycoprotein immunogens: factors influencing efficacy.J.Med.Virol.70, 3177–3185 (1989).
Stanberry L.R., Spruance S.L., Cunningham A.L., Bernstein D.I., Mindel A., Sacks S., Tyring S., Aoki F.Y., Slaoui M., Denis M., Vanpeliere P., Dubin G.: Glycoprotein D-adjuvant vaccine to prevent genital herpes.New Engl.J.Med.21, 1652–1661 (2002).
Stevens J.G.: Latent herpes simplex virus and the nervous system.Curr.Topics Microbiol.Immunol.70, 31–50 (1975).
Strasser J.E., Arnold R.L., Pachuk C., Higgins T.J., Bernstein D.I.: Herpes simplex virus DNA vaccine efficacy: effect of glycoprotein D plasmid constructs.J.Infect.Dis.182, 1304–1310 (2000).
Straus S.E., Corey L., Burke R.L., Savarese B., Barnum G., Krause P.R., Kost R.G., Meier J.L., Sekulovich R., Adair S.F.: Placebo controlled trial of vaccination with recombinant glycoprotein D of herpes simplex virus type 2 for immunotherapy of genital herpes.Lancet343, 1460–1463 (1994).
Straus S.E., Wald A., Kost R.G., McKenzie R., Langenberg A.G., Hohman P., Lekstrom J., Cox E., Nakamura M., Sekulovich R., Izu A., Dekker C., Corey L.: Immunotherapy of recurrent genital herpes with recombinant herpes simplex virus type 2 glycoprotein D and B: results of a placebo controlled vaccine trial.J.Infect.Dis.176, 1129–1234 (1997).
Succato G., Wald A., Wakabayashi E., Vieira J., Corey L.: Evidence of latency and reactivation of both herpes simplex virus HSV-1 and HSV-2 in the genital infection.J.Infect.Dis.177, 1069–1072 (1998).
Sullender W.M., Miller J.L., Yasukawa L.L., Bradley J.S., Black S.B., Yeager A.S., Arvin A.M.: Humoral and cell mediated immunity in neonates with herpes simplex virus infection.J.Infect.Dis.155, 28–37 (1987).
Taylor J.L., Little S.D., O’Brien W.J.O.: The comparative anti-herpes simplex virus effect of human interferons.J.Inter.Cytok.Res.18, 159–165 (1998).
Tenser R.B.: Role of herpes simplex virus thymidine kinases expression in viral pathogenesis and latency.Intervirology32, 76–92 (1991).
Theil D., Derfuss T., Paripovic I., Herberger S., Meinl E., Schueler O., Strupp M., Arbusov V., Brandl T.: Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response.Am.J.Pathol.163, 2179–2184 (2003).
Thomson T.A., Hilfenhaus J., Moser H., Morahan P.S.: Comparison of effects of adjuvants on efficacy of herpes simplex virus vaccine against labial infection of Balb/c mice.Infect.Immun.41, 556–562 (1983).
Thornton B., Griffiths J.B., Walkland A.: Herpes simplex virus vaccine using cell membrane associated antigen in an animal model.Develop.Biol.Standard.50, 201–206 (1982).
Tullo A.B., Shimeld C., Blyth C., Hill T.J., Easty D.L.: Spread of virus and distribution of latent infection following ocular herpes simplex in the non-immune and immune mouse.J.Gen.Virol.63, 95–101 (1982).
Vandepapeliere P.: Therapeutic vaccines for control of herpes simplex virus chronic infections, pp. 217–238 in L.R. Stanberry, D.I. Bernstein (Eds):Sexually Transmitted Diseases. Vaccines, Prevention and Control. Academic Press, London 2000.
Wachsman M., Luo J.H., Aurelian L., Perkus M.E., Paoletti E.: Antigen presenting capacity of epidermal cells infected with vaccinia virus recombinants containing the herpes simplex virus glycoprotein D and protective immunity.J.Gen.Virol.70, 2513–2520 (1989).
Wachsman M., Kulka M., Smith C.C., Aurelian L.: A growth and latency compromised herpes simplex type 2 mutant (ICP10/delPK) has prophylactic and therapeutic protective activity in guinea pigs.Vaccine19, 1879–1890 (2001).
Wallace M.E., Keating R., Heath W.R., Carbone F.R.: The cytotoxic T-cell response to herpes simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single immunodominant determinant.J.Virol.73, 7619–7626 (1999).
Wildy P., Gell P.G.H.: The host response to herpes simplex virus.Brit.Med.Bull.41, 86–91 (1985).
Willey D.U., Cantin E.M., Hill L.R., Moss B., Notkins A.L., Openshaw H.: Herpes simplex type 1 vaccinia virus recombinant expressing glycoprotein B: protection from acute and latent infection.J.Infect.Dis.158, 1382–1386 (1989).
Weitgasser H.: Kontrollierte klinische Studie mit den Herpes Antigenen Lupidon H and Lupidon G.G.Z.Hautkrank.52, 625–628 (1977).
Whitbeck J.C.H., Peng C.H., Lou H., Xu R., Willis S.H., Ponce de Leon M., Peng T., Nicola A.V., Mongomery R.I., Warner M.S., Soulika A.M., Spruce L.A., Moore W.T., Lambris J.D., Spear P.G., Cohen G.H., Eisenberg R.J.: Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM, a member of tumor necrosis factor receptor subfamily and mediator of HSV entry.J.Virol.71, 6083–6093 (1997).
Whitley R.J., Kern E.R., Chatterjee S., Chou J., Roizman B.: Replication establishment of latency, and induced reactivation of herpes simplex virus γ34.5 deletion mutants in rodent models.J.Clin.Invest.91, 2837–2843 (1993).
Whitley R.J.: Herpes simplex vaccines, pp. 727–747 in M.M. Levine, G.C. Woodrow, J.B. Capper, G.S. Cohen (Eds):New Generation of Vaccines, 2nd ed. Marcel Dekker, New York 1997.
Whitley R.J.: Herpes simplex viruses, pp. 2461–2510 in D.M. Knipe, P.M. Howley (Eds):Fields Virology, 4th ed. Lippincott-Williams & Wilkins, Philadelphia-Baltimore-New York-London-Buenos Airees-Hong Kong-Sydney-Tokyo 2001.
York I.A., Roop C., Andrew D.W., Riddel S.R., Graham F.L., Johnson D.C.: A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes.Cell77, 525–535 (1994).
York L.J., Giorgio D., Mishkin E.M.: Immunomodulatory effects of HSV 2 glycoprotein D in HSV-1 infected mice: implications for immunotherapy of recurrent infection.Vaccine13, 1706–1712 (1995).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rajčáni, J., Ďurmanová, V. Developments in herpes simplex virus vaccines: Old problems and new challenges. Folia Microbiol 51, 67–85 (2006). https://doi.org/10.1007/BF02932160
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02932160