Skip to main content
Log in

Synthesis of polyrotaxane-biotin conjugates and surface plasmon resonance analysis of streptavidin recognition

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A polyrotaxane-biotin conjugate was synthesized and its interaction with streptavidin measured using surface plasmon resonance (SPR) detection. A biodegradable polyrotaxane in whichca. 22 molecules of α-cyclodextrins (α-CDs) were threaded onto a poly(ethylene oxide) chain (M n: 4,000) capped with benzyloxycarbonyl-L-phenylalanine was conjugated with a biotin hydorazide and 2-aminoethanol after activating the hydroxyl groups of α-CDs in the polyrotaxane usingN,N′-carbony diimidazole. The results of the high-resolution1H-nuclear magnetic resonance (1H-NMR) spectra and gel permeation chromatography of the conjugate showed thatca. 11 biotin molecules were actually introduced to the polyrotaxane scaffold. An SPR analysis showed that the binding curves of the biotin molecules in the conjugate on the streptavidin-deposited surface changed in a concentration dependent manner, indicating that the biotin in the conjugate was actually recognized by streptavidin. The association equilibrium constant (K a) of the interaction between the conjugate and streptavidin tetramer was of the order 107. These results suggest that polyrotaxane is useful for scaffolds as a polymeric ligand in biomedical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dwek, R. A. (1996) Glycobiology: Toward understanding the functions of sugars.Chem. Rev. 96: 683–720.

    Article  CAS  Google Scholar 

  2. Varki, A. (1993) Biological roles of oligosaccharides all of the theories are correct.Clycobiology 3: 97–130.

    Article  CAS  Google Scholar 

  3. Kiessling, L. L. and N. L. Pohl (1996) Strength in numbers: non-natural polyvalent carbohydrate derivatives.Chem. Biol. 3: 71–77.

    Article  CAS  Google Scholar 

  4. Lee, Y. C., R. R. Townsend, M. R. Hardy, J. Lonngren, J. Arnarp, M. Haraldsson, and H. Lonn (1983) Binding of synthetic oligosaccharides to hepatic Gal/GalNAc lectin. Dependence on fine structural features.J. Biol. Chem., 258: 199–202.

    CAS  Google Scholar 

  5. Kiessling, L. L. and N. L. Pohl (2000) Synthetic multivalent ligands in the exploration of cell-surface interactions.Curr. Opin. Chem. Biol. 4: 696–703.

    Article  CAS  Google Scholar 

  6. Jones, D. S., S. M. Coutts, C. A. Gamino, G. Michael Iverson, M. D. Linnik, M. E. Randow, H. T. Ton-Nu, and E. J. Victoria (1999) Multivalent thioether-peptide conjugates: B cell tolerance of an anti-peptide immune response.Bioconjugte Chem. 10: 480–488.

    Article  CAS  Google Scholar 

  7. Asayama, S., A. Maruyama, and T. Akaike (1999) Combtype prepolymers consisting of a polyacrylamide back-bone and poly(l-lysine) graft chains for multivalent ligands.Bioconjugre Chem. 10: 246–253.

    Article  CAS  Google Scholar 

  8. Keuter, J. D., A. Myc, M. M. Hayes, Z. Gan, R. Roy, D. Qin, R. Yin, L. T. Piehler, R. Esfand, D. A. Tomalia, and J. R. Baker, Jr. (1999) Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymers.Bioconjugte Chem. 10: 271–278.

    Article  Google Scholar 

  9. Kanai, M., K. H. Mortell, and L. L. Kiessling (1997) Varying the size of multivalent ligands: The dependence of Concanavarin A binding on neoglycopolymer length.J. Am. Chem. Soc. 119: 9931–9932.

    Article  CAS  Google Scholar 

  10. Mann, D. A., M. Kanai, D. J. Maly, and L. L. Kiessling (1998) Probing low affinity and multivalent interactions with surface plasmon resonance: Ligand for Concanavarin.J. Am. Chem. Soc. 120: 10575–10582.

    Article  CAS  Google Scholar 

  11. Ge, M., Z. Chen, H. R. Onishi, J. Lohler, L. L. Silver, R. Kerns, S. Fukuzawa, C. Thompson, and D. Kahne (1999) Vancomycin derivatives that inhibit peptideglycan biosynthesis without bindingd-Ala-d-Ala.Science 284: 507–511.

    Article  CAS  Google Scholar 

  12. Kitov, P. I., J. M. Sadowska, and C. M. Whitesides (2000) Shiga-like toxins neutralized by tailored multivalent carbohydrate ligands.Nature 403: 669–672.

    Article  CAS  Google Scholar 

  13. Fan, E. K., Z. S. Zhang, W. E. Minke, Z. Hou, C. Verlinde, and W. G. J. Hi (2000) High-affinity pentavalent ligands ofEscherichia coli hear-labile enterooxin by molecular structure-based design.J. Am. Chem. Soc. 122: 2663–2664.

    Article  CAS  Google Scholar 

  14. Arimoto, H., K. Nishimura, T. Kinumi, I. Hayakawa, and D. Uemura (1999) Multi-valent polymer of vancomycin: enhanced antibacterial activity against VRE.Chem. Commun. 1361–1362.

  15. Yui, N. (ed.)Supramolecular Design for Biological Applications. (in press) CRC Press LLC, FL, USA.

  16. Wang, D., P. Kopeckova, T. Minko, V. Nanayakkara, and J. Kopecek (2000) Synthesis of starlikeN.-(2-hydroxypropyl)methacrylamide copolymers: potential drug carriers,Biomacromolecules 1: 313–319.

    Article  CAS  Google Scholar 

  17. Jeong, B., Y. H. Bae, and S. W. Kim (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLCA-PEG triblock copolymers.J. Contr. Rel. 63: 155–163.

    Article  CAS  Google Scholar 

  18. Ooya, T., and N. Yui (1999) Polyrotaxanes; synthesis, structure and potential in drug delivery.Crit. Rev. Ther. Drug Carrier Syst. 16: 289–330.

    CAS  Google Scholar 

  19. Ooya, T. and N. Yui (1997) Synthesis and characterization of biodegradable polyrotaxane as a novel supramolecular-structured drug carrier.J. Biomater. Sci. Polym. Edn. 8: 437–456.

    Article  CAS  Google Scholar 

  20. Ooya, T., K. Arizono, and N. Yui (2000) Synthesis and characterization of an oligopeptide-terminated polyrotaxane as a drug carrier.Polym. Adv. Tech. 11: 642–651.

    Article  CAS  Google Scholar 

  21. Ooya, T. and N. Yui (1999) Synthesis of a theopylline-polyrotaxane conjugate and its drug release via supramolecular dissociation.J. Contr. Rel. 58: 251–269.

    Article  CAS  Google Scholar 

  22. Ooya, T., M. Eguchi, and N. Yui (2001) Enhanced accessibility of peptide substrate toward a membrane-bound metalloexopeptidase by supramolecular structure of polyrotaxane.Biomacromolecules 2: 200–203.

    Article  CAS  Google Scholar 

  23. Ichi, T., J. Watanabe, T. Ooya, and N. Yui (2001) Controlable erosion time and profile in poly(ethylene glycol) hydrogels by supramolecular structure of hydrolyzable polyrotaxane.Biomacromolecules 2: 204–210.

    Article  CAS  Google Scholar 

  24. Ooya, T. and N. Yui (1998) Supramolecular dissociation of biodegradable polyrotaxanes by terminal hydrolysis,Macromol. Chem. Phys. 199: 2311–2320.

    CAS  Google Scholar 

  25. Green, N. M. (1975) Avidin.Adv. Protein Chem. 29: 25–133.

    Google Scholar 

  26. Torigoe, H., A. Ferdous, H. Watanabe, T. Akaike, and A. Maruyama (1999) Poly(l-lysine)-graft-dextran copolymer promotes pyrimidine motif triplex DNA formation at physiological pH.J. Biol. Chem. 274: 6161–6167.

    Article  CAS  Google Scholar 

  27. Cannizzaro, S. M., R. F. Padera, R. Langer, R. A. Rogers, F. E. Black, M. C. Davis, S. J. B. Tendler, and K. M. Shakesheff (1998) A novel biotylated degradable polymer for cell-interactive applications.Biotechnol. Bioeng. 58: 530–535.

    Article  Google Scholar 

  28. Konoki, K., N. Sugiyama, M. Murata, and K. Tachibana (1999) Direct observation of binding between biotylated okadaic acids and protein phosphatase 2A monitored by surface plasmon resonance.Tetrahedron Lett. 40: 887–890.

    Article  CAS  Google Scholar 

  29. Ghafouri, S. and M. Thompson (1999) Interfacial properties of biotin conjugate-avidin complexes studied by acoustic wave sensor.Langmuir 15: 564–572.

    Article  CAS  Google Scholar 

  30. Harada, A. and M. Kamachi (1990) Complex formation between poly(ethylene glycol) and α-cyclodextrin.Macromolecules 23: 2821–2824.

    Article  CAS  Google Scholar 

  31. O'Shannessy, D. J. (1994) Determination of kinetic rate and equilibrium binding constants for macromolecular interactions: a critique of the surface resonance literature.Curr. Opin. Biorech. 5: 65–71.

    Article  Google Scholar 

  32. Young, D., A. Gill, C. H. Maule, and R. J. Davies (1995) Detection and quantification of biomolecular interactions with optical biosensors.Trends Anal. Chem. 14: 49–56.

    Google Scholar 

  33. Green, R. J., R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendier (2000) Surface plasmon resonance analysis of dynamic biological interactions with biomaterials.Biomaterials 21: 1823–1835.

    Article  CAS  Google Scholar 

  34. Schuster, M. C., K. H. Mortell, A. D. Hegeman, and L. L. Kiessling (1997) Neoglycopolymers produced by aqueous ring-opening metathesis polymerization: decreasing saccharide density increases activity.J. Mol. Cat. A: Chemical 116: 209–216.

    Article  CAS  Google Scholar 

  35. Horan, N., L. Yan, H. Isobe, G. M. Whitesides, and D. Kahne (1999) Nonstatistical binding of a protein to clustered carbohydrates.Proc. Natl. Acad. Sci. USA 96: 11782–11786.

    Article  CAS  Google Scholar 

  36. Dam, T. K., R. Roy, S. K. Das, S. Oscarson, and F. Brewer (2000) Binding of multivalent carbohydrates to concanavalin A andDioclea grandiflora lectin.J. Biol. Chem. 275: 14223–14230.

    Article  CAS  Google Scholar 

  37. Corbell, J. B., J. J. Lundquist, and E. J. Toone (2000) A comparison of biological and calorimetric analyses of multivalent glycodendrimer ligands for concanavalin A.Tetrahedron: Asymmetry 11: 95–111.

    Article  CAS  Google Scholar 

  38. Coya, T., T. Kawashima, I. Tamai, Y. Saito, Y. Sai A. Tsuji, and N. Yui (2001) New concept of multivalent ligands: Polyrotaxane-dipeptide conjugates as a specific inhibitor of intestinal peptide transporter PepT1,Polymer Preprints 42, in press.

  39. Ramanathan, S., S. Stein, M. Leibowitz, and P. J. Sinko (2001) Targeting the intestinal biotin transporter to enhance the permeability of peptides and their biopolymeric conjugates.Proc. Int. Symp. Contr. Rel. Bioact. Mater. 28: 1357–1358.

    Google Scholar 

  40. Park, S., S. Stein, and P. J. Sinko (2001) Targeting the sodium dependent multivitamin transporter (SMVT) in the blood-brain barrier (BBB) to increase the transport of biotin conjugated peptides and polymers.Proc. Int. Symp. Contr. Rel. Bioact. Mater. 28: 1359–1360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiko Yui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ooya, T., Kawashima, T. & Yui, N. Synthesis of polyrotaxane-biotin conjugates and surface plasmon resonance analysis of streptavidin recognition. Biotechnol. Bioprocess Eng. 6, 293–300 (2001). https://doi.org/10.1007/BF02931993

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931993

Keywords

Navigation