Skip to main content
Log in

Influence of benomyl on photosynthetic capacity in soybean leaves

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This investigation was performed to study the influence of benomyl on photosynthetic pigments and enzymes in soybean leaves. Chlorophyll and pheophytin levels were reduced by benomyl 45 days after greening. These results indicate that chlorophylla andb, and pheophytin must be controlled by benomyl. SDS-PAGE analysis showed that 50 and 14.5 kD polypeptides represented as the large and small subunits of rubisco. In the both of these subunits, the band intensity of the control was significantly higher than that after benomyl treatment, indicating that these two subunits are affected by benomyl. Benomyl strongly inhibited both the activity and content of rubisco as its concentration was gradually increased. However, it remains unclear whether this reduction of rubisco level was due to a reduced level of rubisco activase. Two major polypeptides of 46 and 42 kD were identified as rubisco activase subunits by SDS-PAGE. The intensity of these two bands was shown to be higher in the control than after benomyl treatment. These results indicate that the rubisco decrease resulting from increased benomyl concentrations was caused by rubisco activase. A significant decrease in both the activity and content of rubisco activase by benomyl was also observed. These results suggest that the decrease in rubisco level caused by benomyl is accompanied by a decrease in both the activity and content of rubisco activase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BTP:

Bis-tris propane

DMF:

N,N-Dimethylformamide

DTT:

Dithiothreitol

GSH:

Glutathione

MBT:

Mercaptobenzothiazole

PEG:

Polyethylene glycol

PMSF:

Phenylmethylsulfonylfluoride

PSII:

Photosystem II

PVPP:

Polyvinylpolypyrrolidone

References

  1. Chiba, M. and R. P. Singh (1986) High-performance liquid chromatographic method for simultaneous determination of benomyl and carbendazim in aqueous media.J. Agric. Food Chem. 34: 108–112.

    Article  CAS  Google Scholar 

  2. Cano, P., J. L. De la Plaza, and L. Munoz-Delgado (1987) Determination and persistence of several fungicides in postharvest-treated apples during their cold storage.J. Agric. Food Chem. 35: 144–147.

    Article  CAS  Google Scholar 

  3. Delp, C. J. (1987) Benzimidazole and related fungicides. pp. 233–244. In: H. Lyr (ed.).Modern Selective Fungicides-Properties Applications, Mechanisms of Action. Longman Group, London, UK.

    Google Scholar 

  4. Liu, C-H., G. C. Mattern, X. Yu, and J. D. Rosen (1990) Determination of benomyl by high-performance liquid chromatography/mass spectrometry/selected ion monitorning.J. Agric. Food Chem. 38: 167–171.

    Article  CAS  Google Scholar 

  5. Paul, N. D., P. G. Ayres, and L. E. Wyness (1989) On the use of fungicides for experimentation in natural vegetationFunctional Ecol. 3: 759–769.

    Article  Google Scholar 

  6. Sukarno, N., S. E. Smith, and E. S. Scott (1993) The effect of fungicides on vesicular arbuscular mycorrhizal symbiosis. I. The effects on vesicular arbuscular mycorhizal fungi and plant growth.New Phytologist 25: 139–147.

    Article  Google Scholar 

  7. Newsham, K. K., A. H. Fitter, and A. R. Watkinson (1994) Root pathogenic and arbuscular mycorrhizal fungi determine fitness in asymptomatic plant in the field.J. Ecol. 82: 805–814.

    Article  Google Scholar 

  8. Bardalaye, P. C. and W. B. Wheeler (1985) Simplified method for the clean-up and reversed-phase high-performance liquid chromatographic determination of benomyl in mangoes.J. Chromatogr. 330: 403–407.

    Article  CAS  Google Scholar 

  9. Davidse, L. C. (1986) Senzimidazole fungicides: Mechanism of action and biological impact.Annu. Rev. Phytopathol. 24: 43–65.

    Article  CAS  Google Scholar 

  10. Ramanayake, S. M. S. D. and K. Yakandawala (1997) Micropropagation of giant bamboo (Dendrocalamus giganteus Munro) from nodal explants of field grown culms.Plant Sci. 129: 213–223.

    Article  CAS  Google Scholar 

  11. Aragaki, M., J. Y. Uchida, and C. Y. Kadooka (1994) Toxicity of benlate to cucumber and evidence for a volatile phytotoxic decomposition product.Arch. Environ. Contam. Toxicol. 27: 121–125.

    Article  CAS  Google Scholar 

  12. Hale, K. A. and F. E. Sanders (1982) Effects of benomyl on vesicular-arbuscular mycorrhizal infection of red clover (Trifolium pratense L.) and consequences for phosphorus inflow.J. Plant Nutrition 5: 1355–1367.

    Article  CAS  Google Scholar 

  13. Thringstrup, I. and S. Rosendahl (1994) Quantification of fungal activity in arbuscular mycorrhizal symbiosis by polyacrylamide gel eletrophoresis and densitometry of malate dehydrogenase.Soil Biol. Biochem. 26: 1483–1489.

    Article  Google Scholar 

  14. Weissbach, A., B. L. Horeckere, and J. Hurwitz (1956) The enzymatic formation of phosphoglyceric acid from ribulose diphophate and carbon dioxide.J. Biol. Chem. 218: 795–810.

    CAS  Google Scholar 

  15. Bowes, G., W. L. Ogren, and R. H. Hageman (1971) Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase.Biochem. Biophys. Res. Commun. 45: 716–722.

    Article  CAS  Google Scholar 

  16. Badger, M. R. and G. H. Lorimer (1976) Activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. The role of Mg2+, CO2 and pH.Arch. Biochem. Biophys. 175: 723–729.

    Article  CAS  Google Scholar 

  17. Lorimer, G. H. and H. M. Miziorko (1980) Carbamate formation on the amino group of a lysyl residue as the basis for the activation of ribulose bisphosphate carboxylase by CO2 and Mg2+.Biochemistry 19: 5321–5328.

    Article  CAS  Google Scholar 

  18. Salvucci, M. E., A. R. Portis, Jr., and W. L. Ogren (1985) A soluble chloroplast protein catalyzes ribulose-bisphosphate carboxylase/oxygenase activationin vivo, Photosynth. Res. 7: 191–203.

    Article  Google Scholar 

  19. Robinson, S. P. and A. R. Portis, Jr. (1989b) Ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein prevents thein vitro decline in activity of ribulose-1,5-bis-phosphate carboxylase/oxygenase.Plant Physiol. 90: 968–971.

    Article  CAS  Google Scholar 

  20. Portis, A. R. Jr. (1990) Rubisco activase.Biochim. Biophys. Acta 1015: 15–28.

    Article  CAS  Google Scholar 

  21. Salvucci, M. E., J. M. Werneke, W. L. Ogren, and A. R. Portis, Jr. (1987) Puritication of species distribution of rubisco activase.Plant Physiol. 84: 930–936.

    Article  CAS  Google Scholar 

  22. Roh, K. S., J. K. Kim, S. D. Song, H. S. Chung, and J. S. Song (1996) Decrease of the activation and carbamylation of rubisco by high CO2 in kidney bean.Kor. J. Biotechnol. Bioeng. 11: 295–302.

    Google Scholar 

  23. Roh, K. S., I. S. Kim, B. W. Kim, J. S. Song, H. S. Chung, and S. D. Song (1997) Decrease in carbamylation of rubisco by high CO2 concentration is due to decrease of rubisco activase in kidney bean.J. Plant Biol. 40: 73–79.

    Article  CAS  Google Scholar 

  24. Inskeep, W. P. and P. R. Bloom (1985) Extinction coefficients of chlorophylla andb inN,N-dimethylformamide and 80% acetone.Plant Physiol. 77: 483–485.

    Article  CAS  Google Scholar 

  25. Vernon, L. P. (1960) Spectrophotometric determination of chlorophylls and pheophytins in plant extracts.Anal. Chem. 32: 1144–1150.

    Article  CAS  Google Scholar 

  26. Wang, Z. Y., G. W. Snyder, B. D. Esau, A. R. Portis, Jr., and W. L. Ogren (1992) Species-dependent variation in the interaction of substrate-bound ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) and rubisco activase.Plant Physiol. 100: 1858–1862.

    Article  CAS  Google Scholar 

  27. Racker E. (1962) Ribulose diphosphate carboxylase from spinach leaves.Methods Enzymol. 5: 266–270.

    Article  CAS  Google Scholar 

  28. Robinson, S. P. and A. R. Portis, Jr. (1989) Adenosine triphosphate hydrolysis by purified rubisco activase.Arch. Biochem. Biophys. 268: 93–99.

    Article  CAS  Google Scholar 

  29. Wishnick, M. and M. D. Lane (1971) Ribulose disphosphate carboxylase from spinach leaves.Methods Enzymol. 23: 570–577.

    Article  Google Scholar 

  30. Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  31. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4.Nature 227: 680–685.

    Article  CAS  Google Scholar 

  32. Leong, T.-Y. and J. Anderson (1984) Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll-protein complexes.Pirotosynth. Res. 5: 105–115.

    Article  CAS  Google Scholar 

  33. Leong, T.-Y. and J. Anderson (1984) Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. II. Regulation of electron transport capacities, election cariers, coupling factor (CF1) activity and rates of photosynthesis.Photosynth. Res. 5: 117–128.

    Article  CAS  Google Scholar 

  34. Camp, P. J., S. C. Huber, J. J. Burke, and D. E. Moreland (1982). Biochemical changes that occur during senescence of wheat leaves. I. Basis for the reduction of photosynthesis.Plant Physiol. 70: 1641–1646.

    Article  CAS  Google Scholar 

  35. Quick, W. P., U. Schurr, R. Scheibe, E.-D. Schulze, S. R. Rodermel, L. Bogorad, and M. Stitt (1991) Decreased ribulose-1,5-bisphosphate carboxylase/oxygenase in transgenic tobacco transformed with “antisense” rbcS. I. Impact on photosynthesis in ambient growth conditions.Planta 188: 542–554.

    Google Scholar 

  36. Andersson, B. and S. Styring (1991) Photosystem II: Molecular organization, function, and acclimation.Curr. Topics Bioenergetics 16: 1–81.

    CAS  Google Scholar 

  37. Kough, J. L., V. Gianinazzi-Pearson, and S. Gianinazzi (1987) Depressed metabolic activity of vesicular-arbuscular: mycorrhizal fungi after fungicide applications.New Phytologist 106: 707–715.

    Article  CAS  Google Scholar 

  38. Downton, W. J. S., O. Bjorkman, and C. S. Pike (1980) Consequences of increased atmospheric concentrations of carbon dioxide for growth and photosynthesis of higher plant. pp. 143–151. In: G. I. Pearman (ed.).Carbon Dioxide and Climate: Australian Research. Australian Academy of Science, Canberra, Australia.

    Google Scholar 

  39. Makino, A., T. Mae, and K. Ohira (1983) Photosynthesis and ribulose-1,5-bisphosphate carboxylase in rice leaves. Changes in photosynthesis and enzymes involved in carbon assimilation from leaf development through senescence.Plant Physiol. 73: 1002–1007.

    Article  CAS  Google Scholar 

  40. Lilley, R. McC. and A. R. Portis, Jr. (1990) Activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) by rubisco activase. Effects of some sugar phosphates.Plant Physiol. 94: 245–250.

    Article  CAS  Google Scholar 

  41. Portis, A. R. Jr. (1992) Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity.Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 415–437.

    Article  CAS  Google Scholar 

  42. Wang, Z. Y. and A. R. Portis, Jr. (1992) Dissociation of ribulose-1,5-bisphosphate bound to ribulose-1,5-bisphossphate carboxylase/oxygenase and its enhancement by ribulose-1,5-bisphosphate carboxylase/oxygenase activase-mediated hydrolysis of ATP.Plant Physiol. 99: 1348–1353.

    Article  CAS  Google Scholar 

  43. Roh, K. S., M. S. Kwan, Y. H. Do, J. S. Song, H. S. Chung, and S. D. Song (1998) Immunoblot analysis of the expression of genes for barley rubisco activase inE. coli.J. Plant Biol. 41: 288–289.

    Google Scholar 

  44. Sharkey, T. D., L. V. Savitch, and N. D. Butz (1991) Photometric method for routine determination of Keat and carbamylation of rubisco.Photosynth. Res. 28: 41–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Soo Roh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roh, K.S., Oh, M.J., Song, S.D. et al. Influence of benomyl on photosynthetic capacity in soybean leaves. Biotechnol. Bioprocess Eng. 6, 100–106 (2001). https://doi.org/10.1007/BF02931954

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931954

Key words

Navigation