Skip to main content
Log in

Precipitation of minerals by 22 species of moderately halophilic bacteria in artificial marine salts media: Influence of salt concentration

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Precipitation of minerals was shown by 22 species of moderately halophilic bacteria in both solid and liquid artificial marine salts media at different concentration and different Mg2+-to-Ca2+ ratio. Precipitation of minerals was observed for all the bacteria used. When salt concentration increased, the quantity and the size of bioliths decreased, the time required for precipitation being increased. The precipitated minerals were calcite, magnesian calcite, aragonite, dolomite, monohydrocalcite, hydromagnesite and struvite in variable proportions, depending on the bacterial species, the salinity and the physical state of the medium; the Mg content of the magnesian calcite also varied according to the same parameters. The precipitated minerals do not correspond exactly to those which could be precipitated inorganically according to the saturation indices. Scanning electron microscopy showed that the formation of the bioliths is initiated by grouping of calcified cells and that the dominant final morphologies were spherulitic with fibrous radiated interiors. It was demonstrated that moderately halophilic bacteria play an active role in the precipitation of carbonates and we hypothesize about this process of biomineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SI:

saturation index

References

  • Ahimou F., Denis F.A., Touhami A., Dufrene Y.F.: Probing microbial cell surface charges by atomic force microscopy.Langmuir18, 9937–9941 (2002).

    Article  CAS  Google Scholar 

  • Beveridge T.J., Fyfe W.S.: Metal fixation by bacterial cell walls.Can.J.Earth Sci.22, 1892–1898 (1985).

    Google Scholar 

  • Billy C.: Problèmes posés par le métabolisme de quelques bactéries calcifiantes aérobies. I. Étude d’une association bacterienne halophile productice d’aragonite en milieu marin.Vieux Milieu30, 165–169 (1980).

    Google Scholar 

  • Bohor B.F., Hughes R.E.: Scanning electron microscopy of clay and clay minerals.Clays Clay Min.19, 49–54 (1971).

    Article  CAS  Google Scholar 

  • Boquet E., Boronat A., Ramos-Cormenzana A.: Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon.Nature246, 527–528 (1973).

    Article  Google Scholar 

  • Buczynski C., Chafetz H.S.: Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy.J.Sediment.Petrol.61, 226–233 (1991).

    Google Scholar 

  • Cailleau P., Dragone D., Girou A., Humbert L., Jacquin C., Roques H.: Etude expérimentale de la précipitation des carbonates de calcium en présence de l’ion magnésium.Bull.Soc.Franc.Miner.Crist.100, 81–88 (1977).

    CAS  Google Scholar 

  • Erlich H.L.:Geomicrobiology. Marcel Dekker, New York 1996.

    Google Scholar 

  • Ferrer M.R., Quevedo-Sarmiento J., Béjar V., Delgado R., Ramos-Cormenzana A., Rivadeneyra M.A.: Calcium carbonate formation byDeleya halophila: effect on salt concentration and incubation temperature.Geomicrobiol.J.6, 49–57 (1988).

    CAS  Google Scholar 

  • Ferris F.G.: Microbe-metal interaction in sediments, pp. 121–126 in R.E. Riding, S.M. Awramik (Eds):Microbial Sediments. Springer-Verlag, Berlin 2000.

    Google Scholar 

  • Ferris F.G., Fyfe W.S., Beveridge T.J.: Bacteria as nucleation sites for authigenic minerals, pp. 319–326 in J. Berthelin (Ed.):Diversity of Environmental Biogeochemistry, Development in Geochemistry, Vol. 6. Elsevier, Amsterdam 1991.

    Google Scholar 

  • Goldsmith J.R., Graf D.L., Heard H.C.: Lattice constants of the calcium-magnesium carbonates.Am.Miner.46, 453–457 (1961).

    CAS  Google Scholar 

  • González L.A.:Inorganic Calcium Carbonate Precipitation: Controls on Mineralogy, Morphology and Trace Elemental Composition. University Microfilm International, Ann Arbor (USA) 1989.

    Google Scholar 

  • Greenfield L.J.: Metabolism and concentration of calcium carbonate by marine bacteria.Ann.N.Y.Acad.Sci.109, 23–45 (1963).

    Article  CAS  Google Scholar 

  • JCPDS (Joim Committee on Powder Diffraction Standards) and ASTM (American Society for Testing and Materials):Selected Powder Diffraction Data for Minerals (Suppl. JCPDS). Swarthmore (USA) 1981.

  • Kitano Y., Hood D.W.: Calcium carbonate crystals formed from seawater by inorganic processes.J.Ocean.Soc.Japan18, 208–219 (1962).

    Google Scholar 

  • Klug H.P., Alexander L.E.C.:X-Ray Diffraction Procedures for Polycrystalline and Amorphous Material. John Wiley & Sons, New York 1976.

    Google Scholar 

  • Knorre H.V., Krumbein W.E.: Bacterial calcification, pp. 25–31 in R.E. Riding, S.M. Awramik (Eds):Microbial Sediments. Springer-Verlag, Berlin 2000.

    Google Scholar 

  • Kushner H., Kamekura M.: Physiology of halophilic eubacteria, pp. 109–140 in F. Rodriguez-Valera (Ed.):Halophilic Bacteria, Vol. 1. CRC Press, Boca Raton (USA) 1988.

    Google Scholar 

  • Lowenstam H.A., Weiner S.:On Biomineralization. Oxford University Press, Oxford (UK) 1989.

    Google Scholar 

  • Lytle D.A., Johnson C.H., Rice E.W.: A systematic comparison of the electrokinetic properties of environmentally important microorganism in water.Colloid Surface B24, 91–101 (2002).

    Article  CAS  Google Scholar 

  • Maier R.M., Pepper I.L., Gerba C.P.:Environmental Microbiology. Academic Press, San Diego (USA) 2000.

    Google Scholar 

  • Morita R.Y.: Calcite precipitation by marine bacteria.Geomicrobiol.J.2, 63–82 (1980).

    CAS  Google Scholar 

  • Morse J.W.: Kinetics of calcium carbonate dissolution and precipitation, pp. 227–264 in R.J. Reeder (Ed.):Carbonates: Mineralogy and Chemistry. Mineralogical Society of America-Bookcrafters Inc., Chelsea (USA) 1983.

    Google Scholar 

  • Page A.L., Miller R.H., Keeny D.R. (Eds):Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. American Society of Agronomy and Soil Science Society of America. Madison (USA) 1982.

    Google Scholar 

  • Parkhust D.L., Appelo C.A.J.:User’s Guide to PHREEQC (Version 2). A Computer Program for Speciation. Batch-Reaction, One-Dimensional Transport and Inverse Geochemical Calculations. Water Resources Investigations (Report 99-4259). Geological Survey, Denver (USA) 1999.

    Google Scholar 

  • Peckmann J., Paul J., Thiel V.: Bacterially mediated formation of diagenetic aragonite and nature sulfur in Zechstein carbonates (Upper Permian, Central Germany).Sediment.Geol.126, 205–222 (1999).

    Article  CAS  Google Scholar 

  • Raz S., Weiner S., Addadi L.: Formation of high-magnesian calcitesvia an amorphous precursor phase: possible biological implications.Adv.Mater.12, 38–42 (2000).

    Article  CAS  Google Scholar 

  • Reitner J.: Modern cryptic microbialite metazoan facies from Lizard Island (Great Barrier Reef, Australia): formation and concepts.Facies29, 3–40 (1993).

    Article  Google Scholar 

  • Rivadeneyra M.A., Ramos-Cormenzana A., García-Cervigón A.: Bacterial formation of struvite.Geomicrobiol.J.3, 151–163 (1983).

    Article  CAS  Google Scholar 

  • Rivadeneyra M.A., Ramos-Cormenzana A., García-Cervigón A.: Etude de l’influence du rapport Mg/Ca sur la formation de carbonate par des bacteria telluriques.Can.J.Microbiol.31, 229–231 (1985).

    Article  CAS  Google Scholar 

  • Rivadeneyra M.A., Delgado R., Quesada E., Ramos-Cormenzana A.: Precipitation of calcium carbonate byDeleya halophila in media containing NaCl as sole salt.Curr.Microbiol.22, 185–190 (1991).

    Article  CAS  Google Scholar 

  • Rivadeneyra M.A., Pérez-García I., Ramos-Cormenzana A.: Influence of ammonium ion on bacterial struvite production.Geomicrobiol.J.10, 125–137 (1992).

    CAS  Google Scholar 

  • Rivadeneyra M.A., Delgado R., Del-Moral A., Ferrer M.R., Ramos-Cormenzana A.: Precipitation of calcium carbonate byVibrio spp. from and inland saltern.FEMS Microbiol.Ecol.13, 197–204 (1994).

    Article  CAS  Google Scholar 

  • Rivadeneyra M.A., Delgado G., Ramos-Cormenzana A., Delgado R.: Biomineralization of carbonates byHalomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence.Res.Microbiol.149, 277–286 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Rivadeneyra M.A., Parraga J., Delgado R., Ramos-Cormenzana A., Delgado G.: Biomineralization of carbonates byHalobacillus trueperi in solid and liquid media with different salinities.FEMS Microbiol.Ecol.48, 39–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Rosen B.P.: Bacterial calcium transport.Biochim.Biophys.Acta906, 101–110 (1987).

    PubMed  CAS  Google Scholar 

  • Simkiss K., Wilbur K.M.:Biomineralization. Cell Biology and Mineral Deposition. Academic Press, San Diego (USA) 1989.

    Google Scholar 

  • Subow N.N.:Oceanographical Tables. Oceanographic Institute, Hydrometerological Commission, Moscow (USSR) 1931.

    Google Scholar 

  • Wolt J.D.:Soil Solution Chemistry: Applications to Environmental Science and Agriculture. Willey, New York 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Delgado.

Additional information

This study was supported by theSpanish Ministry of Science and Technology project no. REN2003-09136. SEM images were carried out by theServicio de Microscopía Electrónica de la Facultad de Farmacia (University of Granada).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivadeneyra, M.A., Delgado, R., Párraga, J. et al. Precipitation of minerals by 22 species of moderately halophilic bacteria in artificial marine salts media: Influence of salt concentration. Folia Microbiol 51, 445–453 (2006). https://doi.org/10.1007/BF02931589

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931589

Keywords

Navigation