Skip to main content
Log in

Enhanced tolerance against freezing stress inEscherichia coli cells expressing an algal cyclophilin gene

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Members of the cyclophilin (Cyp) family are known to function as co-chaperones, interacting with chaperones such as heat shock protein 90, and perform important roles in protein folding under high temperature stress. In addition, they have been isolated from a wide range of organisms. However, there have been no reports on the functions of algal Cyps under other stress conditions. To study the functions of the cDNAGjCyp-1 isolated from the red alga (Griffithsia japonica), a recombinant GjCyp-1 containing a hexahistidine tag at the amino-terminus was constructed and expressed inEscherichia coli. Most of the gene product expressed inE. coli was organized as aggregate insoluble particles known as inclusion bodies. Thus, the optimal time, temperature, and concentration ofl(+)-arabinose for expressing the soluble and nonaggregated form of GjCyp-1 inE. coli were examined. The results indicate that the induction of Cyp, at 0.2%l(+)-arabinose for 2 h at 25°C, had a marked effect on the yield of the soluble and active form of the co-chaperone as PPlase. An expressed fusion protein, H6GjCyp-1, maintained the stability ofE. coli proteins up to-75°C. In a functional bioassay of the recombinant H6GjCyp-1, the viability ofE. coli cells overexpressing H6GjCyp-1 was compared to that of cells not expressing H6GjCyp-1 at −75°C. For all the cycles of a freeze/thaw treatment, a significant increase in viability was observed in theE. coli cells overexpressing H6GjCyp-1. The results of the GjCyp-1 bioassays, as well asin vitro studies, strongly suggest that the algal Cyp confers freeze tolerance toE. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antikainen, M. and M. Griffith (1997) Antifreeze protein accumulation in freezing-tolerant cereals.Physiol. Plant. 99: 423–432.

    Article  CAS  Google Scholar 

  2. Boothe, J. G., F. D. Sonnichsen, M. D. de Beus, and A. M. Johnson-Flanagan (1997) Purification, characterization, and structural analysis of a plant low-temperature-induced protein.Plant Physiol. 113: 367–376.

    Article  CAS  Google Scholar 

  3. Ndong, C., F. Ouellet, M. Houde, and F. Sarhan (1997) Gene expression during cold acclimation in strawberry.Plant Cell Physiol. 38: 863–870.

    CAS  Google Scholar 

  4. Tiku, P. E., A. Y. Gracey, A. I. Macartney, R. J. Beynon, and A. R. Cossins (1996) Cold-induced expression of delta 9-desaturase in carp by transcriptional and posttranscriptional mechanisms.Science 271: 815–818.

    Article  CAS  Google Scholar 

  5. Yamashita, M., N. Ojima, and T. Sakamoto (1996) Molecular cloning and cold-inducible gene expression of ferritin H subunit isoforms in rainbow trout cells.J. Biol. Chem. 271: 26908–26913.

    Article  CAS  Google Scholar 

  6. Pearce, R. S. (1999) Molecular analysis of acclimation to cold.Plant Growth Regul. 29: 47–76.

    Article  CAS  Google Scholar 

  7. Arora, R., L. J. Rowland, and G. R. Panta (1997) Chill-responsive dehydrins in blueberry: Are they associated with cold hardiness or dormancy transitions?Physiol. Plant. 101: 8–16.

    Article  CAS  Google Scholar 

  8. Ferullo, J. M., L. P. Vezina, J. Rail, S. Laberge, P. Nadeau, and Y. Castonguay (1997) Differential accumulation of two glycine-rich proteins during cold-acclimation alfalfa.Plant Mol. Biol 33: 625–633.

    Article  CAS  Google Scholar 

  9. Sokolova I. M. and H. O. Pörtner (2003) Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda: Littorinidae) from different latitudes.J. Exp. Biol. 206: 195–207.

    Article  Google Scholar 

  10. Zhu, B., T. H. H. Chen, and P. H. Li (1993) Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance inSolanum commersonii.Plant Mol. Biol. 21: 729–735.

    Article  CAS  Google Scholar 

  11. Lewis, J. G., R. P. Learmonth, and K. Watson (1995) Induction of heat, freezing and salt tolerance by heat and salt shock inSaccharomyces cerevisiae.Microbiology 141: 687–694.

    CAS  Google Scholar 

  12. Queitsch, C., S. W. Hong, E. Vierling, and S. Lindquist (2000) Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis.Plant Cell 12: 479–492.

    Article  CAS  Google Scholar 

  13. Boston, R. S., P. V. Viitanen, and E. Vierling (1996) Molecular chaperones and protein folding in plants.Plant Mol. Biol. 32: 191–222.

    Article  CAS  Google Scholar 

  14. Cho, E. K., Y. K. Lee, and C. B. Hong (2005) A cyclophilin fromGriffithsia japonica has thermoprotective activity and is affected by CsA.Mol. Cells 20: 142–150.

    CAS  Google Scholar 

  15. Luan, S., W. S. Lane, and S. L. Schreiber (1994) pCyP B: a chloroplast-localized, heat shock-responsive cyclophilin from fava bean.Plant Cell 6: 885–892.

    Article  CAS  Google Scholar 

  16. Marivet, J., M. Margis-Pinheiro, P. Frendo, and G. Burkard (1994) Bean cyclophilin gene expression during plant development and stress conditions.Plant Mol. Biol. 26: 1181–1189.

    Article  CAS  Google Scholar 

  17. Marivet, J., M. Margispinheiro, P. Frendo, and G. Burkard (1995) DNA sequence analysis of a cyclophilin gene from maize: developmental expression and regulation by salicylic acid.Mol. Gen. Genet. 247: 222–228.

    Article  CAS  Google Scholar 

  18. Mark, P. J., B. K. Ward, P. Kumar, H. Lahooti, R. F. Minchin, and T. Ratajczak (2001) Human cyclophilin 40 is a heat shock protein that exhibits altered intracellular localization following heat shock.Cell Stress Chaperones 6: 59–70.

    Article  CAS  Google Scholar 

  19. Clubb, R. T., S. B. Ferguson, C. T. Walsh, and G. Wagner (1994) Three-dimensional solution structure ofEscherichia coli periplasmic cyclophilin.Biochemistry 33: 2751–2772.

    Article  Google Scholar 

  20. Fejzo, J., F. A. Etzkorn, R. T. Clubb, Y. Shi, C. T. Walsh, and G. Wagner (1994) The mutantEscherichia coli F112W cyclophilin binds cyclosporin A in nearly identical conformation as human cyclophilin.Biochemistry 33: 5711–5720.

    Article  CAS  Google Scholar 

  21. Lee, Y. K., C. B. Hong, Y. Suh, and I. K. Lee (2002) A cDNA clone for cyclophilin fromGriffithsia japonica and phylogenetic analysis of cyclophilins.Mol. Cells 13: 12–20.

    Google Scholar 

  22. English, T. E. and K. B. Storey (2003) Freezing and anoxia stresses induce expression of metallothionein in the foot muscle and hepatopancreas of the marine gastropodLittorina littorea.J. Exp. Biol. 206: 2517–2524.

    Article  CAS  Google Scholar 

  23. Larade, K., A. Nimigan, and K. B. Storey (2001) Transcription pattern of ribosomal protein L26 during anoxia exposure inLittorina littorea.J. Exp. Zool. 290: 759–768.

    Article  CAS  Google Scholar 

  24. Menally, J. D., S. B. Wu, C. M. Sturgeon, and K. B. Storey (2002) Identification and characterization of a novel freezing inducible gene,li16, in the wood frogRana sylvatica.FASEB J. 16: 902–904.

    Google Scholar 

  25. Kim, K. P., M. K. Joe, and C. B. Hong (2004) Tobacco small heat-shock protein, NtHSP18.2, has broad substrate range as a molecular chaperone.Plant Sci. 167: 1017–1025.

    Article  CAS  Google Scholar 

  26. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  27. Sambrook, J., E. F. Fritsch, and T. Maniatis (1989)Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  28. Duina, A. A., J. A. Marsh, R. B. Kurtz, H. J. Chang S. Lindquist, and R. F. Gaber (1998) The peptidyl-prolyl isomerase domain of the CyP-40 cyclophilin homolog Cpr7 is not required to support growth or glucocorticoid receptor activity inSaccharomyces cerevisiae.J. Biol. Chem. 273: 10819–10822.

    Article  CAS  Google Scholar 

  29. Liu, X. D., K. A. Morano, and D. J. Thiele (1999) The yeast Hsp110 family member, Ssel, is an Hsp90 cochaperone.J. Biol. Chem. 274: 26654–26660.

    Article  CAS  Google Scholar 

  30. Weisman, R., J. Creanor, and P. Fantes (1996) A multicopy suppressor of a cell cycle defect inSchizosaccharomyces pombe encodes a heat shock-inducible 40 kDa cyclophilin-like protein.EMBO J. 15: 447–456.

    CAS  Google Scholar 

  31. Küllertz, G., A. Liebau, P. Rücknagel, A Schierhorn, B. Diettrich, G. Fischer, and M. Luckner (1999) Stress-induced expression of cyclophilins in proembryonic masses ofDigitalis lanata does not protect against freezing/thawing stress.Planta 208: 599–605.

    Article  Google Scholar 

  32. Guy C. L., D. Haskell, and Q. B. Li (1998) Association of proteins with the stress 70 molecular chaperones at low temperature: evidence for the existence of cold labile proteins in spinach.Cryobiology 36: 301–314.

    Article  CAS  Google Scholar 

  33. Sung, D. Y., E. Vierling, and C. L. Guy (2001) Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family.Plant Physiol. 126: 789–800.

    Article  CAS  Google Scholar 

  34. Lopez-Matas, M. A., P. Nuñez, A Soto, I. Allona, R. Casado, C. Collada, M. A. Guevara, C. Aragoncillo, and L. Gomez (2004) Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures.Plant Physiol 134: 1708–1717.

    Article  CAS  Google Scholar 

  35. Place, S. P. and G. E. Hofmann (2005) Temperature differentially affects adenosine triphosphatase activity in Hsc70 orthologs from Antarctic and New Zealand notothenioid fishes.Cell Stress Chaperones 10: 104–113.

    Article  CAS  Google Scholar 

  36. Walker, D. C., H. S. Girgis, and T. R. Klaenhammer (1999) ThegroESL chaperone operon ofLactobacillus johnsonii.Appl. Environ. Microbiol. 65: 3033–3041.

    CAS  Google Scholar 

  37. Chow, K. C. and W. L. Tung (1998) Overexpression ofdnaK/dnaJ andgroEL confers freeze tolerance toEscherichia coli.Biochem. Biophys. Res. Commun. 253: 502–505.

    Article  CAS  Google Scholar 

  38. Tesic, M., J. A. Marsh, S. B. Cullinan, and R. F. Gaber (2003) Functional interactions between Hsp90 and the co-chaperones Cns1 and Cpr7 inSaccharomyces cerevisiae.J. Biol. Chem. 278: 32692–32701.

    Article  CAS  Google Scholar 

  39. Edvardsson, A., S. Eshaghi, A. V. Vener, and B. Andersson (2003) The major peptidyl-prolyl isomerase activity in thylakoid lumen of plant chloroplasts belongs to a novel cyclophilin TLP20.FEBS Lett. 542: 137–141.

    Article  CAS  Google Scholar 

  40. Kern, G., D. Kern, F. X. Schmid, and G Fischer (1994) Reassessment of the putative chaperone function of prolylcis/ trans-isomerase.FEBS Lett 348: 145–148.

    Article  CAS  Google Scholar 

  41. Rutherford, S. L. and C. S. Zuker (1994) Protein folding and the regulation of signaling pathways.Cell 79: 1129–1132.

    Article  CAS  Google Scholar 

  42. Kinoshita, T. and K. I. Shimazaki (1999) Characterization of cytosolic cyclophilin from guard cells ofVicia jaba L.Plant Cell Physiol. 40: 53–59.

    CAS  Google Scholar 

  43. Schneider, H., N. Charara, R. Schmitz, S. Wehrli, V. Mikol, M. G. Zurini, V. F. Quesniaux, and N. R. Movva (1994) Human cyclophilin C: primary structure tissue distribution, and determination of binding specificity for cyclosporins.Biochemistry 33: 8218–8224.

    Article  CAS  Google Scholar 

  44. Kim, J. E., E. J. Kim, W. J. Rhee, and T. H. Park (2005) Enhanced production of recombinant protein inEscherichia coli using silkworm hemolymph.Biotechnol. Bioprocess Eng. 10: 353–356.

    Article  CAS  Google Scholar 

  45. Shin, E. J., S. L. Park, S. J. Jeon, J. W. Lee, Y. T. Kim, Y. H. Kim, and S. W. Nam (2006) Effect of molecular chaperones on the soluble expression of alginate lyase inE. coli.Biotechnol Bioprocess Eng. 11: 414–419.

    Article  CAS  Google Scholar 

  46. Kim, H. and I. H. Kim (2005) Refolding of fusion ferritin by gel filtration chromatography (GFC).Biotechnol. Bioprocess Eng. 10: 500–504.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Kyung Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, E.K. Enhanced tolerance against freezing stress inEscherichia coli cells expressing an algal cyclophilin gene. Biotechnol. Bioprocess Eng. 12, 502–507 (2007). https://doi.org/10.1007/BF02931347

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931347

Keywords

Navigation