Skip to main content
Log in

Ethanol production by recombinantescherichia coli carrying genes from zymomonas mobilis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Efficient utilization of lignocellulosic feedstocks offers an opportunity to reduce the cost of producing fuel ethanol. The fermentation performance characteristics of recombinantEscherichia coli ATCC 11303 carrying the“PET plasmid” (pLOI297) with thelac operon controlling the expression of pyruvate decarboxylase(pdc) and alcohol dehydrogenase II(adhB ) genes cloned fromZymomonas mobilis CP4 (Alterthum & Ingram, 1989) were assessed in batch and continuous processes with sugar mixtures designed to mimic process streams from lignocellulosic hydrolysis systems.

Growth was pseudoexponential at a rate (generation time) of 1.28 h at pH 6.8 and 1.61 h at pH 6.0. The molar growth yields for glucose and xylose were 17.28 and 7.65 g DW cell/mol, respectively (at pH 6.3 and 30°C), suggesting that the net yield of ATP from xylose metabolism is only 50% compared to glucose. In pH-stat batch fermentations (Luria broth with 6% sugar, pH 6.3), glucose was converted to ethanol 4–6 times faster than xylose, but the glucose conversion rate was much less than can be achieved with comparable cell densities ofZymomonas. Sugar-to-ethanol conversion efficiencies in nutrient-rich, complex LB medium were near theoretical at 98 and 88% for glucose and xylose, respectively. The yield was 10–20% less in a defined-mineral-salts medium. Acetate at a concentration of 0.1M (present in lignocellulosic hydrolysates from thermochemical processing) inhibited glucose utilization (about 50%) much more than xylose, and caused a decrease in product yield of about 30% for both sugars. With phosphate-buffered media (pH 7), glucose was a preferred substrate in mixtures with a ratio of hexose to pentose of 2.3 to 1. Xylose was consumed after glucose, and the product yield was less (0.37 g/g). Under steady-state conditions of continuous culture, the specific productivity ranged from 0.76–1.24 g EtOH/g cell/h, and the maximum volumetric productivity, 2.5 g EtOH/L/h, was achieved with a rich complex LB medium (glucose) at pH 6.0 (30°C) and ethanol at 1.63% (v/v). Growth and fermentation were poor in a buffered-wood (aspen) “hemicellulose hydrolysate” containing 4% xylose and 0.1M acetate with added thiamine and mineral salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keim, C. R. (1989),Trends Biotechnol. 7, 22–29.

    Article  Google Scholar 

  2. Wright, J. D. (1988),Chem. Eng. Progress,84, 62–68.

    CAS  Google Scholar 

  3. Wyman, C. E. and Hinman, N. D. (1990), Proc. 11th Symp. on Biotech. for Fuels & Chemicals,Appl. Biochem. Biotechnol., vol.24/25, 735–753.

    Google Scholar 

  4. Fein, J. E., Charley, R. C., Droniuk, R., Good, D., Hopkins, K., Lawford, G. R., Zawadzki, B., and Lawford, H. G. (1984),Proc. Waterloo Biomass Conversion Symp., University of Waterloo, July, Waterloo, Ontario, Canada.

    Google Scholar 

  5. Lawford, G. R., Charley, R. C., Edamura, R., Fein, J. E., Hopkins, K., Potts, D., Zawadzki, B., and Lawford, H. G. (1984),Proc. Bioenergy Specialists' Meeting in Waterloo, October, Waterloo, Ontario, Canada.

  6. Lawford, H. G. (1988),Appl. Biochem. Biotechnol. 17, 203–209.

    Article  CAS  Google Scholar 

  7. Lawford, H. G. and Ruggiero, A. (1989),Bioenergy, (Proc. 7th Cdn. Bioenergy R&D Seminar), Hogan, E., ed., NRCC, Ottawa, Canada, pp. 401–408.

    Google Scholar 

  8. Skoog, K. and Hahn-Hagerdal, B. (1988),Enzyme Microb. Technol 10, 66–80.

    Article  CAS  Google Scholar 

  9. Lynd, L. R (1989), Proc. 11th Symp. on Biotech. for Fuels & Chemicals,Appl. Biochem. Biotech.

  10. Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., and Preston, J. F., (1987),Appl. Environ. Microbiol. 53, 2420–2425.

    CAS  Google Scholar 

  11. Ingram, L. O. and Conway, T. (1988),Appl. Environ. Microbiol 54, 397–404.

    CAS  Google Scholar 

  12. Alterthum, F. and Ingram, L. O. (1989),Appl. Environ. Microbiol. 55, 1943- 1948.

    CAS  Google Scholar 

  13. Lin, E. C. C. (1987),Escherichia coli and Salmonella typhimurium, vol. 1, Neidhradt, F. C., Ingraham, J. L., Low, F. B., Magasanik, B., and Schaechter, M., eds., Am. Soc. Microbiol., Washington, DC.

    Google Scholar 

  14. Kastner, J. R. and Roberts, R. S. (1990),Biotechnol. Lett. 12, 57–60.

    Article  CAS  Google Scholar 

  15. Jeffries, T. W. and Sreenath, H. K. (1988),Biotechnol. Bioeng. 31, 502–506.

    Article  CAS  Google Scholar 

  16. Slinger, P. J. R., Bothast, R.J., Okos, M. R., and Ladisch, M. R. (1985),Biotechnol. Lett. 7, 431–436.

    Article  Google Scholar 

  17. Beck, M. J. (1989),Biotechnol. Bioeng. 17, 617–627.

    Google Scholar 

  18. Nicholson, C., Foody, B., Malloch, E., Fiander, H., Wayman, M., Parekh, S., and Parekh, R. (1989),Bioenergy (Proc. 7th Cdn. Bioenergy R&D Seminar), Hogan, E., ed., NRCC, Ottawa, pp. 385–388.

    Google Scholar 

  19. Gans, I., Potts, D., Matsuo, A., Tse, T., Holysh, M., and Assarsson, P. (1989),Bioenergy, (Proc. 7th Cdn. Bioenergy R&D Seminar), Hogan, E., ed., NRCC, Ottawa, Canada, pp. 419–423.

    Google Scholar 

  20. Delgenes, J.P., Moletta, R., and Navarro, J. M. (1988),Biotechnol. Lett 10, 725–730.

    Article  CAS  Google Scholar 

  21. Alexander, M. A., Chapman, T. W., and Jeffries, T. W. (1988),Appl. Biochem. Biotechnol. 17, 221–229.

    Article  CAS  Google Scholar 

  22. Alexander, M. A., Chapman, T. W., and Jeffries, T. W. (1988),Appl. Microbiol. Biotechnol. 28, 478–486.

    Article  CAS  Google Scholar 

  23. Gong, C-S., Claypool, T. A., McCracken, L. D., Maun, C. M., Ueng, P. P., and Tsao, G. T. (1983),Biotechnol. Bioeng. 25, 300–305.

    Article  Google Scholar 

  24. Lacis, L. S. (1989), PhD thesis, University of Toronto, Toronto, Canada.

    Google Scholar 

  25. Lacis, L. S. and Lawford, H. G. (1989),Bioenergy, (Proc. 7th Cdn. Bioenergy R&D Seminar) Hogan, E., ed., NRCC, Ottawa, Canada, pp. 411–415.

    Google Scholar 

  26. Liu, H-S., Hsu, H-W., and Sayler, G. S. (1988),Biotechnol. Prog. 4, 40–46.

    Article  CAS  Google Scholar 

  27. Luria, S. E. and Delbruck, M. (1943),Genetics 28, 491–511.

    CAS  Google Scholar 

  28. Parekh, S. R., Parekh, R. S., and Wayman, M. (1987),Process Biochem. 22(6), 85–91.

    CAS  Google Scholar 

  29. Parekh, S. R., Yu, S., and Wayman, M. (1986),Appl. Microbiol. Biotechnol. 25, 300–304.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D. Ethanol production by recombinantescherichia coli carrying genes from zymomonas mobilis. Appl Biochem Biotechnol 28, 221–236 (1991). https://doi.org/10.1007/BF02922603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922603

Index Entries

Navigation