Skip to main content
Log in

Study on the law of radiant directionality of row crops

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

The style of crops planting is frequently in row-structure, the row-structure style may result in big difference among the sunlit, shaded soil surface and foliage temperatures and cause pixel component to vary in azimuth orientation, these further lead to the change of radiant directionlity of row crops in the zenith and azimuth orientations. Since the row crops are often tackled as isotropic in the azimuth orientation based on continuous vegetation assumption, big errors will be brought about. In order to eliminate the errors, it is necessary to study the law of radiant directionality of the row crops. In this paper, Monte Carlo method has been employed to simulate the angular effects on radiation caused by row architecture parameters. The simulated results show that the parameters, for example, row height, row width, row interval between the neighbor rows and the leaf area index have significant influences on the radiant directionality, but the azimuth orientation ranks the first among the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wan, Z., Li, Z., A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data, IEEE Trans. on GARS, 1997, 35(4): 980.

    Google Scholar 

  2. Vining, R. C., Blad, B. L., Estimation of sensible heat flux from remotely sensed canopy temperatures, J. Geophys. Res., 1992, 97(D17): 18951.

    Google Scholar 

  3. Jeckson, R. D., Reginato, R. J., Idso, S. B., Wheat canopy temperature: a practical tool for evaluating water requirements, Water Resour: Res., 1977, 13: 651.

    Article  Google Scholar 

  4. Jeckson, R. D., Idso, S. B., Reginato, R. J. et al., Canopy temperature as a crop water stress indicator, Water Resource Research, 1981, 17(4): 1133.

    Article  Google Scholar 

  5. Idso, S. B., Jeckson, R. D., Reginato, R. J., Remote sensing of crop yields, Science, 1977, 196: 19.

    Article  Google Scholar 

  6. Das, D. K., Mishra, K. K., Kalra, N., Assessing growth and yield of wheat using remotely-sensed canopy temperature and spectral indices. Int. J. Remote Sensing, 1993, 14(7): 3081.

    Article  Google Scholar 

  7. Kimura, F., Shimire, A. P., Estimation of sensible and latent heat fluxes from soil surface temperature using a linear air land heat transfer model. J. Appl. Meteor., 1994, 33(5): 477.

    Article  Google Scholar 

  8. Becker, F., Li, Z., Towards a local split-window method over land surfaces, Int. J. Remote Sens., 1990, 11(3): 369.

    Article  Google Scholar 

  9. Becker, F., Li, Z., Temperature-independent spectral indices in thermal infrared bands, Remote Sens. Environ., 1990, 32: 17.

    Article  Google Scholar 

  10. Wan, Z., Dozier, J., Surface temperature measurement from space: physical principles and inverse modeling, IEEE Trans. on GARS, 1989, 27(3): 268.

    Google Scholar 

  11. Wan, Z., Dozier, J., A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. on GARS, 1996, 34(4): 892.

    Google Scholar 

  12. Xu, X., Liu, Q., Chen, J., Synchronous retrieval of land surface temperature and emissivity, Science in China, Series D, 1998, 41(6): 658.

    Article  Google Scholar 

  13. Li, X., Strahler, A. H., Friedl, M. A., A conceptual model for effective directional emissivity from non-isothermal surface. IEEE Trans. on GARS, 1999, 37(5): 2508.

    Google Scholar 

  14. Dozier, J., Warren, S. G., Effect of viewing angle on the infrared brightness temperature of snow, Water Resources Res., 1982, 18(5): 1424.

    Article  Google Scholar 

  15. Kimes, D. S., Smith, J. A., Link, L. E., Thermal IR exitance model of a plant canopy, Applied Optics, 1981, 20(4): 623.

    Google Scholar 

  16. Lagouarde, J. P., Kerr, Y. H., Brunet, Y., An experimental study of angular effects on surface temperature for various plant canopies and bare soils. Agricultural and Forest Meteorology, 1995, 77: 153.

    Article  Google Scholar 

  17. Becker, F., Li, Z., Surface temperature and emissivity at various scales: definition, measurement and related problems, Remote Sensing Review, 1995, 12: 225.

    Google Scholar 

  18. Norman, J., Becker, F., Terminology in thermal infrared remote sensing of natural surface, Agriculture and Forest Meteorology, 1995, 77: 153.

    Article  Google Scholar 

  19. Wan, Z., Dozier, J., A generalized split-window algorithm for retrieving land-surface temperature from space, IEEE Trans. on GARS, 1996, 34(4): 892.

    Google Scholar 

  20. Chen, L., Zhuang, J., Xu, X. et al., The concept of effective emissivity of non-isothermal mixed pixel and its test, Chinese Science Bulletin(in Chinese), 2000, 45(1): 22.

    Google Scholar 

  21. Otterman, J., Brakke, T. W., Fuchs, M. et al., Longwave emission from a plant/soil surface as a function of the view direction: dependence on the canopy architecture, Int. J. Remote Sensing, 1999, 20(11): 2195.

    Article  Google Scholar 

  22. Sutherland, R. A., Bartholic, J. F., Significance of vegetation in interpreting thermal radiation from a terrestrial surface, Journal of Applied Meterology, 1977, 18: 759.

    Article  Google Scholar 

  23. Jeckson, R. D., Reginato, R. J., Pinter, P. J. et al., Plant canopy information extraction from composite scence reflectance of row crop. Applied Optics, 1979, 18: 3775.

    Google Scholar 

  24. Kimes, D. S., Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques. Remote Sensing of Environment, 1983, 13: 33.

    Article  Google Scholar 

  25. Antyufeev, V. S., Marshak, A. L., Monte Carlo method and transport equation in plant canopies, Remote Sensing Environ., 1990, 31: 183.

    Article  Google Scholar 

  26. Chen, L., Zhuang, J., Xu, X. et al., The simulation of thermal radiant directionality of continuous vegetation using Monte Carlo method, Journal of Remote Sensing(in Chinese), 2000, 4(4): 261.

    Google Scholar 

  27. Yang, X., Shout, T. H., Fox, R. D. et al., Plant architectural parameters of a greenhouse cucumber row crop. Agricultural and Forest Meterology, 1990, 51: 93.

    Article  Google Scholar 

  28. Fuchs, M., Tanner, C. B., Infrared thermometry of vegetation, Agronomy Journal, 1966, 58: 597.

    Google Scholar 

  29. Idso, S. B., De Wit, C. T., Light relations in plant canopies, Applied Optics, 1970, 9(1): 177.

    Article  Google Scholar 

  30. Blad, B. L., Rosenberg, N. J., Measurement of crop temperature by leaf thermo-couple, infrared thermometry and remotely sensed thermal imagery, Agronomy Journal, 1976, 68: 625.

    Google Scholar 

  31. Salisbury, J. W., Milton, N. M., Thermal infrared (2.5 to 13.5 μm) directional hemispherical reflectance of leaves, Photogrammetry Engineering and Remote Sensing, 1988, 54: 1301.

    Google Scholar 

  32. Fuchs, M., Tanner, C. B., Surface temperature measurements of bare soils, Journal of Applied Meterology, 1968, 58: 597.

    Google Scholar 

  33. Nerry, F., Labed, J., Stoll, M. P., Spectral properties of land surfaces in the thermal infrared band: Laboratory measurements of absolute spectral emissivity and reflectivity signatures, Journal of Geophysical Research, 1990, 95: 7027.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangfu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Zhuang, J., Liu, Q. et al. Study on the law of radiant directionality of row crops. Sci. China Ser. E-Technol. Sci. 43 (Suppl 1), 70–82 (2000). https://doi.org/10.1007/BF02916581

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916581

Keywords

Navigation