Skip to main content
Log in

The structure and bifurcation of atmospheric motions

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The 3-D spiral structure resulting from the balance between the pressure gradient force, Coriolis force, and viscous force is a common atmospheric motion pattern. If the nonlinear advective terms are considered, this typical pattern can be bifurcated. It is shown that the surface low pressure with convergent cyclonic vorticity and surface high pressure with divergent anticyclonic vorticity are all stable under certain conditions. The anomalous structure with convergent anticyclonic vorticity is always unstable. But the anomalous weak high pressure structure with convergent cyclonic vorticity can exist, and this denotes the cyclone’s dying out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D. G., and J. R. Holton, 1987:Middle Atmospheric Dynamics, Academic Press, New York, 489pp.

    Google Scholar 

  • Chandrasekhar, S., 1961:Hydrodynamic and Hydromagnetic Stability. Oxford University Press, New York, 613pp.

    Google Scholar 

  • Charney, J. G., 1948: On the scale of atmospheric motions.Geophys. Publ.,17, 1–17.

    Google Scholar 

  • Emmanuel, K. A., 1994:Atmospheric Convection, Oxford University Press, New York, 580pp.

    Google Scholar 

  • Haltiner, G. L., and F. L. Martin, 1957:Dynamical and Physical Meteorology. McGraw-Hill, New York, 470pp.

    Google Scholar 

  • Holton, J. R., 1972:An Introduction to Dynamic Meteorology, Academic Press, New York, 319pp.

    Google Scholar 

  • Houghton, H. G., 1985:Physical Meteorology, MIT, MA, Cambridge, 442pp.

    Google Scholar 

  • Kubicek, M., and M. Marek, 1983:Computational Methods in Bifurcation Theory and Dissipative Structure, Springer-Verlag, Berlin, 276pp.

    Google Scholar 

  • Kurihara, Y., 1982: Influence of environmental condition on the genesis of tropic storms.Intense Atmospheric Vortices, L. Bengtssoon and J. Lighthill, Eds., Springer-Verlag, Berlin, 71–79.

    Google Scholar 

  • Kuznetsov, Y. A., 1996:Elements of Applied Bifurcation Theory. Springer-Verlag, Berlin, 551pp.

    Google Scholar 

  • Lilly, D. K., 1982: The development and maintenance of rotation in convective storms.Intense Atmospheric Vortices, L. Bengtssoon and J. Lighthill, Eds., Springer-Verlag, Berlin, 149–160.

    Google Scholar 

  • Liu Shida, Liu Shikuo, Fu Zuntao, Xin Guojun, and Liang Fuming, 2003: From 2-D geostrophic wind to 3-D vortex motions.Chinese Journal of Geophysics,46(4), 649–656.

    Google Scholar 

  • Liu Shida, Xin Guojun, Liu Shikuo, and Liang Fuming, 2000: The 3-D spiral structure pattern in the atmosphere.Adv. Atmos. Sci.,17(4), 519–525.

    Article  Google Scholar 

  • Panofsky, H. A., and J. A. Dutton, 1984:Atmospheric Turbulence. John Wiley & Sons, New York, 397pp.

    Google Scholar 

  • Sullivan, R. D., 1959: A two-cell vortex solution of the Navier-Stokes equations.J. Aero/space Sci.,26, 767–768.

    Google Scholar 

  • Zeng Qingcun, 1979:Mathematical and Physical Basis of Numerical Weather Forecasting (I). Science Press, Beijing, 543pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Liu, S., Fu, Z. et al. The structure and bifurcation of atmospheric motions. Adv. Atmos. Sci. 21, 557–561 (2004). https://doi.org/10.1007/BF02915723

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02915723

Key words

Navigation