Skip to main content
Log in

Geotectonic significance of detrital chromian spinel: a review

  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Detrital chromian spinel is one of important minerals in paleogeographic reconstructions. Its host rocks, such as mafic to ultramafic rocks, occur in several types of tectonic settings. The chemical composition of the spinels provides specific information about the types of their source rocks in different tectonic settings. In this review, chemical characteristics of various mafic and ultramafic rocks are summarized in terms of chromian spinels. The geodynamic processes of host rock formation and emplacement to the source area could be interpreted by comparing the chemical compositions of detrital chromian spinels with those of the mafic to ultramafic rocks of the known tectonic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai, S., 1987, An estimation of the least depleted spinel peridotite on the basis of olivine-spinel mantle array. Neues Jahrbuch Mineralogie, Monatsh, 1987, 347–354.

    Google Scholar 

  • Arai, S., 1989, Upper mantle peridotites beneath Japan island arcs. Kaiyo Montly, 21, 47–54. (in Japanese)

    Google Scholar 

  • Arai, S., 1990, Chemical compositions of chromian spinel and olivine in some alkaline rocks from Japan. Science Report of the Kanazawa University, 35, 25–38.

    Google Scholar 

  • Arai, S., 1991, The Circum-Izu Massif peridotite, central Japan, as back-arc mantle fragments of the Izu-Bonin arc system. In: Peters, Tj., Nicolas, A. and Coleman, R.G. (eds.), Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Kluwer, Dordrecht, p. 807–822.

    Google Scholar 

  • Arai, S., 1992, Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine, 56, 173–184.

    Article  Google Scholar 

  • Arai, S., 1994, Characterization of spinel peridotites by olivine—spinel compositional relationships: review and interpretation. Chemical Geology, 113, 191–204.

    Article  Google Scholar 

  • Arai, S. and Okada, H., 1991, Petrology of serpentine sandstone as a key to tectonic development of serpentine belts. Tectonophysics, 195, 65–81.

    Article  Google Scholar 

  • Bloomer, S.H. and Fisher, R.L., 1987, Petrology and geochemistry of igneous rocks from the Tonga Trench—a nonaccreting plate boundary. Journal of Geology, 95, 469–495.

    Article  Google Scholar 

  • Boudier, F. and Nicolas, A., 1985, Harzburgite and Iherzolite in ophiolite and oceanic environments. Earth and Planetary Science Letters, 76, 84–92.

    Article  Google Scholar 

  • Cookenboo, H.O., Bustin, R.M. and Wilks, K.R., 1997, Detrital chromian spinel compositions used to reconstruct the tectonic setting of provenance: implications for orogeny in the Canadian cordillera. Journal of Sedimentary Research, 67, 116–123.

    Google Scholar 

  • Crawford, A.J., Falloon, T.J. and Green, D.H., 1989, Classification, petrogenesis and tectonic setting of boninites. In: Crawford, A.J. (ed.), Boninites, Unwin Hyman, London, p. 2–49.

    Google Scholar 

  • Deer, W.A., Howie, R.A. and Zussman, J., 1992, An Introduction to the Rock-forming Minerals (2nd edn.). Longman Scientific & Technical, Hongkong, 696 p.

    Google Scholar 

  • den Tex, E., 1969, Origin of ultramafic rocks, their tectonic setting and history. Tectonophysics, 7, 457–488.

    Article  Google Scholar 

  • Dick, H.J.B. and Bullen, T., 1984, Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86, 54–76.

    Article  Google Scholar 

  • Evans, B.W. and Frost, B.R., 1975, Chrome-spinel in progressive metamorphism—a preliminary analysis. Geochimica et Cosmochimica Acta, 39, 957–972.

    Article  Google Scholar 

  • Hawkins, J.W. and Melchior, J.T., 1985, Petrology of Mariana Trough and Lau Basin basalts. Journal of Geophysical Research, 90, 11431–11468.

    Article  Google Scholar 

  • Hisada, K. and Arai, S., 1993, Detrital chrome spinels in the Cretaceous Sanchu sandstone, central Japan: indicator of serpentinite protrusion into a fore-arc region. Palaeogeography, Palaeoclimatology, Palaeoecology, 105, 95–109.

    Article  Google Scholar 

  • Hodges, F.N. and Papike, J.J., 1977, Petrology of basalts, gabbros and peridotites from DSDP Leg 37. In: Aumento, W. F. and Melson, W.G. (eds.), Initial Reports on the Deep Sea Drilling Project, 37, 711–723.

  • Irvine, T.N., 1965, Chrome spinel as a petrogenetic indicator: Part I—theory. Canadian Journal of Earth Sciences, 2, 648–674.

    Google Scholar 

  • Irvine, T.N., 1974, Petrology of the Duke Island Ultramafic Complex, southeastern Alaska. Geological Society of America, Memoir, 138, 240 p.

  • Ishii, T., 1987, Seamounts and oceanic islands; their classification, vertical movements and histories. Earth Monthly, 9, 542–549. (in Japanese)

    Google Scholar 

  • Jackson, E.D. and Thayer, T.P., 1972, Some criteria for distinguishing between stratiform, concentric and alpine peridotite-gabbro complexes. 24th International Geological Congress, Report of the Section 2, Montreal, August, p. 289–296.

  • Kepezhinskas, P.K., Taylor, R.N. and Tanaka, H., 1993, Geochemistry of plutonic spinels from the North Kamchatka Arc: comparisons with spinels from other tectonic settings. Mineralogical Magazine, 57, 575–589.

    Article  Google Scholar 

  • Michael, P.J. and Bonatti, E., 1985, Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting. Earth and Planetary Science Letters, 73, 91–104.

    Article  Google Scholar 

  • Nixon, G.T., Cabri, L.J. and LaFlamme, J.H.G., 1990, Platinum-group-element mineralization in lode and placer deposits associated with the Tulameen Alaskan-type complex, British Columbia. Canadian Mineralogist. 28, 503–535.

    Google Scholar 

  • Nixon, P.H., 1987, Mantle Xenoliths. Wiley, New York, 844 p.

    Google Scholar 

  • Nicolas, A., 1986, Structure and petrology of peridotites: clues to their geodynamic environment. Reviews of Geophysics, 24, 875–895.

    Article  Google Scholar 

  • Pearce, J.A., Van der Laan, S.R., Arculus, R.J., Murton, B.J., Ishii, T., Peate, D.W. and Parkinson, I., 1992, Boninite and harzburgite from ODP Leg 125 (Bonin-Mariana fore-arc): a case study of magma genesis during the initial stages of subduction. Proceedings of the ODP, Scientific Results, 125, 623–659.

    Google Scholar 

  • Pober, E. and Faupl, P., 1988, The chemistry of detrital chromian spinels and its implications for the geodynamic evolution of the Eastern Alps. Geologische Rundschau, 77, 641–670.

    Article  Google Scholar 

  • Press, S., 1986, Detrital spinels from alpinotype source rocks in Middle Devonian sediments of the Rhenish Massif. Geologische Rundschau, 75, 333–340.

    Article  Google Scholar 

  • Schrader, E.L., Rosendahl, B.R., Furbish, W.J. and Meadows, G., 1980, Picritic basalts from the Siqueiros transform fault. In: Rosendahl, B.R., Hekinian, R. et al. (eds.), Initial Reports on the Deep Sea Drilling Project, 54, 771–778.

  • Sigurdsson, H. and Schilling, J.-G., 1976, Spinels in Mid-Atlantic Ridge Basalts: chemistry and occurrence. Earth and Planetary Science Letters, 29, 7–20.

    Article  Google Scholar 

  • Stern, R.J. and Bloomer, S.H., 1992, Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arc. Geological Society of America Bulletin, 104, 1621–1636.

    Article  Google Scholar 

  • Talkington, R.W. and Malpas, J.G., 1984, The formation of spinel phases of White Hills peridotite, St. Anthony complex, Newfoundland. Neues Jahrbuch für Mineralogie, Abhandlungen, 149, 65–90.

    Google Scholar 

  • Taylor, B., Fujioka, K. et al., 1990, Proceedings of the ODP, Initial Reports, 126, College Station, TX, 418 p.

  • Taylor, R.N., Lapierre, H., Vidal, Ph., Nesbitt, R.W. and Croudace, I.W., 1992, Igneous geochemistry and petrogenesis of the Izu-Bonin forearc basin. In: Taylor, B. and Fujioka, K. (eds.), Proceedings of the ODP, Scientific Results, 126, 405–430.

  • Utter, T., 1978, The origin of detrital chromites in the Klerksdorp Goldfield, Witwatersand, South Africa. Neues Jahrbuch für Mineralogie, Abhandlungen, 133, 191–209.

    Google Scholar 

  • Wood, B.J., 1991, Oxygen barometry of spinel peridotites. In: Lindsley, D.H. (ed.), Oxide Minerals: Petrologic and Magmatic Significance. Reviews in Mineralogy, Mineralogical Society of America, 25, 417–431.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Il Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y.I. Geotectonic significance of detrital chromian spinel: a review. Geosci J 3, 23–29 (1999). https://doi.org/10.1007/BF02910231

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02910231

Key words

Navigation