Abstract
The secretion from cells plays a significant role in life activites and in the fields of neurobiology, cell biology, clinic, pathology, pharmacology etc. Thus to investigate the secretion at the single cell level with the developing methods is a frontier cross-discipline research activity. The contents, methods and new progress of this research have been reviewed by electrochemical monitoring combined with patch-clamp techniques, fluorescent detection and immunoassay, and the prospects on the frontier of the research area have been discussed.
Similar content being viewed by others
References
Cheng, J. K., Wang, Z. L., Analysis of single cells by microcolumn separation, Chemical Journal of Chiense Universities (in Chinese). 1997, 18(7): 1046.
Hu, S., Pang, D. W., Wang, Z. L. et al., Determination of catecholamines in single sympathetic nerve cell of rat by capillary electrophoresis with ampemmetric detection, Chinese Journal of Analytical chemistry (in Chinese), 1998, 26(6): 752.
Wightman, R. M., Finnegan, J. M., Pihel, K., Monitoring catecholamines at single cells, Tr. Anal. Chem., 1995, 14: 154.
Huang, L., Kennedy, R. T., Exploring single-cell dynamics using chemically-modified micralectrodes. Tr. Anal. Chem. 1995, 14: 158.
Wightman, R. M., Jankowski, J. A., Kennedy, R. T. et al., Temporally resolved catecholamine spikes correpond to single vesicle release from individual chromaffin cells, Proc. Natl. Acad. Sci. USA. 1991, 88: 10754.
Jankowaski, J. A., Schroeder, T. J., Wightman, R. M. et al., Quantal secretion of catecholamines measured from individual bovine adrenal medullary cells peemeabilized with digotonin, J. Biol. Chem., 1992, 267: 18329.
Piehl, K., Schroeder, T. J., Wightman, R. M., Rapid and selective cyclic voltammetric measurements of epinephrine and norepinephrine as a method to measure secretion from single bovine adrenal medullary cells, Anal. Chem., 1994, 66: 4532.
Pihel, K., Walker, Q. D., Wightman, R. M., Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry, Anal. Chem., 1996, 68: 2084.
Chen, T. K., Luo, G., Ewing, A. G., Amperomebic monitoring of stimulated catecholamine release from rat pheochromocytoma (PC12) cells at zeptomole level, Anal. Chem., 1994, 66: 3031.
Kozminski, K. D., Gutman, D. A., Ewing, A. G. et al., Voltammetric and pharmacological charectenization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells. Anal. Chem., 1998, 70: 3123.
Chow, R. H., Ruden, L., Neher, E., Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature, 1992, 356: 60.
Marszalek, P. E., Farrel, B., Fernandez, J. M. et al., Kinetics of release of secretion from isolated secretory granules. I. Ampemmetric detection of serotonin from electroporated granules, Biophys, J., 1997, 73: 1160.
Pihel, K., Hsieh, S., Wightman, R. M., et al., Electrochemical detection of histamine and 5-hydroxytryptamine at isolated mast cells, Anal. Chem., 1995, 67: 4514.
Kennedy, R. T., Huang, L., Aspinwall, C. A., Extracellular pH is required for rapid release of insulin from Zn-insulin precipitates in β-cell secretory vesicles during exocytosis, J. Am. Chem. Soc., 1996, 118: 1795.
Aspinwall, C. A., Brooks, S. A., Kennedy, R. T. et al., Effects of intravesicular H+ and Zn2+ on insulin secretion in pancreatic beta cells, J. Biol. Chem., 1997, 272: 31308.
Malinski, T., Taha, Z., Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor, Nature. 1992, 358: 676.
Paras, C. D., Kennedy, R. T., Electrochemical detection of exocytosis at single rat melanotrophs, Anal. Chem., 1995, 67: 3633.
Bratten, C. D., Cobbold, P. H., Cooper, J. M., Single-cell measurements of purine release using a micromachined electroanlytical sensor, Anal. Chem., 1998, 70: 1164.
Belan, P., Gardner, J., Tepikin, A. V. et al., Isopmterenol evokes extracellular Ca2+ spikes due to secretory events in salivary gland cells, J. Biol. Chem., 1998, 273: 4106.
Xin, Q., Wightman, R. M., Simultaneous detection of catecholamine exocytosis and Ca2+ release from single bovine chromaffin cells using a dual microsensor, Anal. Chem., 1998, 70: 1677.
Kim, T. D., Eddlestone, G. T., Fewtrell, C. et al., Correlating Ca2+ responses and secretion in individual RBL-2H3 mucosal mast cells, J. Biol. Chem., 1997, 272: 31225.
Scheenen, W. J. J. M., Wollheim, C. B., Pozzan, T. et al., Ca2+ depletion from granules inhibits exocytosis, J. Biol. Chem., 1998, 273: 19002.
Wu, L. G., Borst, J. G. G., Sakmann, B., R-type Ca2+ currents evoke transmmiter release at a rat central synapse, Proc. Natl. Acad. Sci. USA. 1998, 95: 4720.
Klingauf, J., Neher, E., Modeling buffered Ca2+ diffusion near the membrane: Implications for secretion in neuroendocrine cells. Biophys. J., 1997, 72: 674.
Borges, R., Travis, E. R., Wightman, R. M. et al., Effects of external osmotic pressure on vesicular secretion from bovine adrenal medullary cells, J. Biol. Chem., 1997, 272: 8325.
Pihel, K., Travis, E. R., Wightman, R. M. et al., Exocytotic release from individual granules exhibits similar properties at mast and chromaffin cells, Biophys. J., 1996, 71: 1633.
Schmidt, H. H. H. W., Warner, T. D., Ishii, K. et al., Insulin secretion from pancretic B cells by L-argininie-derived nitrogen oxides, Science, 1992, 255: 721.
Efthimiopoulos, S., Vassilacopoulou, D., Robakis, N. K. et al., Cholinergic agonists stimulatre secretion of soluble full-length amyloid precursor protein in neuroendocrine cells, Proc. Natl. Acad. Sci. USA, 1996, 93: 8046.
Mehta, P. P., Battenberg, E., Wilson, M. C., SNAP-25 and synaptotagmin involvement in the final Ca2+-dependent triggering of neurotransmitter exocytosis, Proc. Natl. Acad. Sci. USA, 1996, 93: 10471.
Lingon, B., Boyd, III. A. E., Dunlap, K., Class A channel variants in pancreatic islets and their role in insulin secretion, J. Biol. Chem., 1998, 273: 13905.
Eliasson, L., Renstrom, E., Rosman, P. et al., PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic β cells, Science, 1996, 271: 813.
Vaigant, J. F., Correges, P., Israel, M., et al., Quantal acetylcholine release induced by mediotophore transfection, Proc. Natl. Acad. Sci. USA. 1996, 93: 5203.
Cannell, M. B., Cheng, H., Lederer, W. J., The control of calcium release in heart muscle, Science, 1995, 268: 1045.
Tong, W., Yeung, E. S., Monitoring single-cell phannacokineticsly by capillary electrophoresis and laser induced native fluorescence, J. Chromatogr B, 1997, 689: 321.
Liu, Y., Moroz, T., Sweedler, J. V., Monitoring cellular realease with dynamic channel electrophoresis. Anal. Chem., 1999, 71: 28.
Chiu, D. T., Hsiao, A., Zare, R. N. et al., Injection of ultrasmall samples and single molecules into tappered capillaries, Anal. Chem., 1997, 69: 1801.
Chiu, D. T., Wilson, C. F., Zare, R. N. et al., Chemical transformation in individual ultrasmall biomimetic containers, Science. 1999, 283: 1892.
Author information
Authors and Affiliations
About this article
Cite this article
Huang, W., Hu, S., Pang, D. et al. Monitoring the secretion from single cells with temporal and spatial resolution. Chin.Sci.Bull. 45, 289–295 (2000). https://doi.org/10.1007/BF02909756
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02909756