Skip to main content
Log in

Monitoring the secretion from single cells with temporal and spatial resolution

  • Reviews
  • Published:
Chinese Science Bulletin

Abstract

The secretion from cells plays a significant role in life activites and in the fields of neurobiology, cell biology, clinic, pathology, pharmacology etc. Thus to investigate the secretion at the single cell level with the developing methods is a frontier cross-discipline research activity. The contents, methods and new progress of this research have been reviewed by electrochemical monitoring combined with patch-clamp techniques, fluorescent detection and immunoassay, and the prospects on the frontier of the research area have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, J. K., Wang, Z. L., Analysis of single cells by microcolumn separation, Chemical Journal of Chiense Universities (in Chinese). 1997, 18(7): 1046.

    CAS  Google Scholar 

  2. Hu, S., Pang, D. W., Wang, Z. L. et al., Determination of catecholamines in single sympathetic nerve cell of rat by capillary electrophoresis with ampemmetric detection, Chinese Journal of Analytical chemistry (in Chinese), 1998, 26(6): 752.

    CAS  Google Scholar 

  3. Wightman, R. M., Finnegan, J. M., Pihel, K., Monitoring catecholamines at single cells, Tr. Anal. Chem., 1995, 14: 154.

    CAS  Google Scholar 

  4. Huang, L., Kennedy, R. T., Exploring single-cell dynamics using chemically-modified micralectrodes. Tr. Anal. Chem. 1995, 14: 158.

    Article  CAS  Google Scholar 

  5. Wightman, R. M., Jankowski, J. A., Kennedy, R. T. et al., Temporally resolved catecholamine spikes correpond to single vesicle release from individual chromaffin cells, Proc. Natl. Acad. Sci. USA. 1991, 88: 10754.

    Article  PubMed  CAS  Google Scholar 

  6. Jankowaski, J. A., Schroeder, T. J., Wightman, R. M. et al., Quantal secretion of catecholamines measured from individual bovine adrenal medullary cells peemeabilized with digotonin, J. Biol. Chem., 1992, 267: 18329.

    Google Scholar 

  7. Piehl, K., Schroeder, T. J., Wightman, R. M., Rapid and selective cyclic voltammetric measurements of epinephrine and norepinephrine as a method to measure secretion from single bovine adrenal medullary cells, Anal. Chem., 1994, 66: 4532.

    Article  Google Scholar 

  8. Pihel, K., Walker, Q. D., Wightman, R. M., Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry, Anal. Chem., 1996, 68: 2084.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, T. K., Luo, G., Ewing, A. G., Amperomebic monitoring of stimulated catecholamine release from rat pheochromocytoma (PC12) cells at zeptomole level, Anal. Chem., 1994, 66: 3031.

    Article  PubMed  CAS  Google Scholar 

  10. Kozminski, K. D., Gutman, D. A., Ewing, A. G. et al., Voltammetric and pharmacological charectenization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells. Anal. Chem., 1998, 70: 3123.

    Article  PubMed  CAS  Google Scholar 

  11. Chow, R. H., Ruden, L., Neher, E., Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature, 1992, 356: 60.

    Article  PubMed  CAS  Google Scholar 

  12. Marszalek, P. E., Farrel, B., Fernandez, J. M. et al., Kinetics of release of secretion from isolated secretory granules. I. Ampemmetric detection of serotonin from electroporated granules, Biophys, J., 1997, 73: 1160.

    CAS  Google Scholar 

  13. Pihel, K., Hsieh, S., Wightman, R. M., et al., Electrochemical detection of histamine and 5-hydroxytryptamine at isolated mast cells, Anal. Chem., 1995, 67: 4514.

    Article  PubMed  CAS  Google Scholar 

  14. Kennedy, R. T., Huang, L., Aspinwall, C. A., Extracellular pH is required for rapid release of insulin from Zn-insulin precipitates in β-cell secretory vesicles during exocytosis, J. Am. Chem. Soc., 1996, 118: 1795.

    Article  CAS  Google Scholar 

  15. Aspinwall, C. A., Brooks, S. A., Kennedy, R. T. et al., Effects of intravesicular H+ and Zn2+ on insulin secretion in pancreatic beta cells, J. Biol. Chem., 1997, 272: 31308.

    Article  PubMed  CAS  Google Scholar 

  16. Malinski, T., Taha, Z., Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor, Nature. 1992, 358: 676.

    Article  PubMed  CAS  Google Scholar 

  17. Paras, C. D., Kennedy, R. T., Electrochemical detection of exocytosis at single rat melanotrophs, Anal. Chem., 1995, 67: 3633.

    Article  PubMed  CAS  Google Scholar 

  18. Bratten, C. D., Cobbold, P. H., Cooper, J. M., Single-cell measurements of purine release using a micromachined electroanlytical sensor, Anal. Chem., 1998, 70: 1164.

    Article  PubMed  CAS  Google Scholar 

  19. Belan, P., Gardner, J., Tepikin, A. V. et al., Isopmterenol evokes extracellular Ca2+ spikes due to secretory events in salivary gland cells, J. Biol. Chem., 1998, 273: 4106.

    Article  CAS  Google Scholar 

  20. Xin, Q., Wightman, R. M., Simultaneous detection of catecholamine exocytosis and Ca2+ release from single bovine chromaffin cells using a dual microsensor, Anal. Chem., 1998, 70: 1677.

    Article  PubMed  CAS  Google Scholar 

  21. Kim, T. D., Eddlestone, G. T., Fewtrell, C. et al., Correlating Ca2+ responses and secretion in individual RBL-2H3 mucosal mast cells, J. Biol. Chem., 1997, 272: 31225.

    Article  PubMed  CAS  Google Scholar 

  22. Scheenen, W. J. J. M., Wollheim, C. B., Pozzan, T. et al., Ca2+ depletion from granules inhibits exocytosis, J. Biol. Chem., 1998, 273: 19002.

    Article  PubMed  CAS  Google Scholar 

  23. Wu, L. G., Borst, J. G. G., Sakmann, B., R-type Ca2+ currents evoke transmmiter release at a rat central synapse, Proc. Natl. Acad. Sci. USA. 1998, 95: 4720.

    Article  PubMed  CAS  Google Scholar 

  24. Klingauf, J., Neher, E., Modeling buffered Ca2+ diffusion near the membrane: Implications for secretion in neuroendocrine cells. Biophys. J., 1997, 72: 674.

    PubMed  CAS  Google Scholar 

  25. Borges, R., Travis, E. R., Wightman, R. M. et al., Effects of external osmotic pressure on vesicular secretion from bovine adrenal medullary cells, J. Biol. Chem., 1997, 272: 8325.

    Article  PubMed  CAS  Google Scholar 

  26. Pihel, K., Travis, E. R., Wightman, R. M. et al., Exocytotic release from individual granules exhibits similar properties at mast and chromaffin cells, Biophys. J., 1996, 71: 1633.

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt, H. H. H. W., Warner, T. D., Ishii, K. et al., Insulin secretion from pancretic B cells by L-argininie-derived nitrogen oxides, Science, 1992, 255: 721.

    Article  PubMed  CAS  Google Scholar 

  28. Efthimiopoulos, S., Vassilacopoulou, D., Robakis, N. K. et al., Cholinergic agonists stimulatre secretion of soluble full-length amyloid precursor protein in neuroendocrine cells, Proc. Natl. Acad. Sci. USA, 1996, 93: 8046.

    Article  PubMed  CAS  Google Scholar 

  29. Mehta, P. P., Battenberg, E., Wilson, M. C., SNAP-25 and synaptotagmin involvement in the final Ca2+-dependent triggering of neurotransmitter exocytosis, Proc. Natl. Acad. Sci. USA, 1996, 93: 10471.

    Article  PubMed  CAS  Google Scholar 

  30. Lingon, B., Boyd, III. A. E., Dunlap, K., Class A channel variants in pancreatic islets and their role in insulin secretion, J. Biol. Chem., 1998, 273: 13905.

    Article  Google Scholar 

  31. Eliasson, L., Renstrom, E., Rosman, P. et al., PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic β cells, Science, 1996, 271: 813.

    Article  PubMed  CAS  Google Scholar 

  32. Vaigant, J. F., Correges, P., Israel, M., et al., Quantal acetylcholine release induced by mediotophore transfection, Proc. Natl. Acad. Sci. USA. 1996, 93: 5203.

    Article  Google Scholar 

  33. Cannell, M. B., Cheng, H., Lederer, W. J., The control of calcium release in heart muscle, Science, 1995, 268: 1045.

    Article  PubMed  CAS  Google Scholar 

  34. Tong, W., Yeung, E. S., Monitoring single-cell phannacokineticsly by capillary electrophoresis and laser induced native fluorescence, J. Chromatogr B, 1997, 689: 321.

    Article  CAS  Google Scholar 

  35. Liu, Y., Moroz, T., Sweedler, J. V., Monitoring cellular realease with dynamic channel electrophoresis. Anal. Chem., 1999, 71: 28.

    Article  PubMed  CAS  Google Scholar 

  36. Chiu, D. T., Hsiao, A., Zare, R. N. et al., Injection of ultrasmall samples and single molecules into tappered capillaries, Anal. Chem., 1997, 69: 1801.

    Article  PubMed  CAS  Google Scholar 

  37. Chiu, D. T., Wilson, C. F., Zare, R. N. et al., Chemical transformation in individual ultrasmall biomimetic containers, Science. 1999, 283: 1892.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Huang, W., Hu, S., Pang, D. et al. Monitoring the secretion from single cells with temporal and spatial resolution. Chin.Sci.Bull. 45, 289–295 (2000). https://doi.org/10.1007/BF02909756

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02909756

Keywords