Skip to main content
Log in

The complexity of the Epstein-Barr virus infection in humans

  • Review
  • Published:
Pathology & Oncology Research

Abstract

The Epstein-Barr virus (EBV) was isolated 40 years ago from cultures of Burkitt lymphoma cells (BL). The tumor was encountered in Africa and exhibited characteristical geographical, clinical and pathological features. Serological studies revealed that the virus is ubiquitous in humans. The primary infection is often accompanied by the syndrome of acute infectious mononucleosis (IM). It can induce malignant proliferation of B lymphocytes in conditions of immunodeficiency. EBV can immortalize B lymphocytes in culture. These cells carry the virus as episomes and express 9 virally encoded proteins. Their immunological recognition constitutes the surveillance which is responsible for the healthy virus carrier state. The main virus reservoir is represented by a low number of resting B lymphocyte which contain the viral genome but do not express its transformation proteins. The viral genom is detectable in all African BLs, in variable proportions of nasopharyngeal carcinoma, Hodgkin’s disease, T cell lymphoma, lymphoepithelial like carcinoma, gastric carcinoma and leiomyosarcoma cases. The role of EBV in the genesis of these tumors is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BL:

Burkitt lymphoma

LCL:

lymphoblastoid cell line

EBV:

Epstein-Barr virus

EBNA:

Epstein Barr virus encoded nuclear antigen

LMP:

latent-membrane-protein

NPC:

nasopharyngeal carcinoma

IM:

infectious mononucleosis

CTL:

cytotoxic T lymphocytes

MHC:

major histocompatibility comples

PCR:

polymerase-chain-reaction

PTLD:

post-transplant lymphoproliferative diseases

References

  1. Anagnostopoulos I, Hummel M and Stein H: Frequent presence of latent Epstein-Barr virus infection in peripheral T cell lymphomas. A review. Leuk Lymphoma 19:1–12, 1995.

    Article  CAS  Google Scholar 

  2. d Amore F, Johansen P, Houmand A, et al: Epstein-Barr virus genome in non-Hodgkin’s lymphoma occurring in immunocompetent patients: Highest prevalence in non-lymphopblastic T-cell lymphoma and correlation with poor prognosis. Blood 87:1045–1055, 1996.

    PubMed  Google Scholar 

  3. de Bruin PC, Jiwa M, Oudejans JJ, et al: Presence of Epstein Barr virus in extranodal T- cell lymphomaas. Differences in relation to site. Blood 83:1612–1618, 1994.

    PubMed  Google Scholar 

  4. Burkitt DP: The discovery of Burkitts Lymphoma. Cancer 51:1777–1786, 1983.

    Article  PubMed  CAS  Google Scholar 

  5. Chen F, Zou JZ, di Renzo L, et al: A subpopulation of normal B cells latently infected with Epstein-Barr virus resembles Burkitt lymphoma cells in expressing EBNA-1 but not EBNA-2 or LMP-1. J Virology 69:3752–3758, 1995.

    PubMed  CAS  Google Scholar 

  6. Dillner J and Kallin B: The Epstein-Barr virus proteins. (Review) Adv in Cancer Research 50:95–158, 1988.

    Article  CAS  Google Scholar 

  7. Farell PJ: Epstein-Barr virus immortalizing genes. (Review) Trends in Microbiol 3:105–109, 1995.

    Article  Google Scholar 

  8. Gaidano G and Dalla-Favera R: Molecular pathogenesis of AIDS- related lymphomas. Adv Cancer Res 67:113–153, 1995.

    PubMed  CAS  Google Scholar 

  9. Gires O, Zimber-Strobl U. Gonella R, Ueffing M, et al: Latent membrane protein 1 of Epstein-Barr virus mimics a constitutive active receptor molecule. EMBO J. 16:6131–6140, 1997.

    Article  PubMed  CAS  Google Scholar 

  10. Gregory CD, Rowe M and Rickinson AB: Different EpsteinBarr virus- B cell interaction in phenotypically distinct clones of a Burkitts lymphoma cell line. J Gen Virol 71:1481–1495, 1990.

    PubMed  CAS  Google Scholar 

  11. Henderson S, Rowe M, Gregory C, et al: Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65:1107–1115, 1991.

    Article  PubMed  CAS  Google Scholar 

  12. Henle W and Henle G: The virus as the etiologic agent of infectious mononucleosis. In: The Epstein-Barr Virus. (Eds: Epstein MA and Achong BG), Berlin, Springer Verlag, 297–320, 1979.

    Google Scholar 

  13. Herbst H, Niedobitek G, Kneba M, et al: High incidence of Epstein-Barr virus genomes in Hodgkins disease. Am J Pathol 137:13–18, 1990.

    PubMed  CAS  Google Scholar 

  14. Imai S, Koizumi S, Sugiura M, et al: Gastric carcinoma: monoclonal epithelial malignant cell expressing Epstein- Barr virus latent infection protein. Proc Nat Acad Sci 91:9131–9135, 1994.

    Article  PubMed  CAS  Google Scholar 

  15. Klein G: Viral latency and transfromation: the strategy of Epstein- Barr virus. Cell 58:5–8, 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Klein G: Epstein-Barr virus strategy in normal and neoplastic B cells. Cell 77:791–793, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Levitskaya J, Coram M, Levitsky V, et al: Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375:685–688, 1995.

    Article  PubMed  CAS  Google Scholar 

  18. Magrath I: The pathogenesis of Burkitt lymphoma. In Adv Cancer Res (ed Vande Woude GF and Klein G) 133–269. San Diego: Acad. Press Inc. 1990.

    Google Scholar 

  19. Masucci MG and Ernberg I: Epstein-Barr virus: adaptation in a life within the immune system.Trends of Microbiol 2:125–130, 1994.

    Article  CAS  Google Scholar 

  20. Moss DJ, Rickinson AB and Pope JH: Long term T-cell -mediated immunity to Epstein-Barr virus in man. I. Complete regression of virus induced transfromation in cultures of seropositive donor leukocytes. Intern J Cancer 22:662–668, 1978.

    Article  CAS  Google Scholar 

  21. OReilly RJ, Lacerda JF, Lucas KG, et al: Adoptive cell therapy with donor lymphocytes for EBV-associated lymphomas developing after allogeneic marrow transplants. (Review) Important Advances in Oncology (Ed: DeVita VT, Hellman S and Rosenberg S) Lippincott-Raven, Philadelphia: 149–166, 1966.

    Google Scholar 

  22. Pallesen G, Hamilton-Dutoit SJ and Zhou X: The association of Epstein-Barr virus (EBV) with T cell lymphoproliferation and Hodgkin’s disease: two new developments in the EBV field. In: Adv Cancer Research 62:179–239, 1993.

    CAS  Google Scholar 

  23. Rickinson AB, Lee SP and Steven NM: Cytotoxic T-lymphocyte response to Epstein-Barr virus (Review) Current Opinion in Immunology 8:492–497, 1996.

    Article  PubMed  CAS  Google Scholar 

  24. Su IJ, Chen JY: The role of Epstein-Barr virus in lymphoid malignancies. Critical Rev in Oncology/Hematology 26:25–41, 1997.

    Article  CAS  Google Scholar 

  25. Wang F, Gregory C, Sample C, et al: Epstein-Barr virus latent membrane protein (LMP-1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B-lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol 64:2309–2318, 1990.

    PubMed  CAS  Google Scholar 

  26. Yoshiyama H,Imai S,Shimizu N, et al: Epstein Barr virus infection of human gastric carcinoma cells: Implication of the existence of a new virus receptor different from CD21. J Virol 71:5088–5091, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgement: Supported by the the Swedish Cancer Society (Cancerfonden)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, E. The complexity of the Epstein-Barr virus infection in humans. Pathol. Oncol. Res. 4, 3–7 (1998). https://doi.org/10.1007/BF02904687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02904687

Key words

Navigation