Skip to main content
Log in

Ultrastructural localization of adenosinetriphosphatase activity in skeletal muscle by calcium precipitation at high pH

Submikroskopischer Nachweis der Aktivität von Adenosintriphosphatase in Skeletmuskeln durch Calcium-Niederschlag bei hohem pH

  • Published:
Virchows Archiv B

Zusammenfassung

Der ultrastrukturelle Nachweis von ATPase-Aktivität in Skeletmuskeln der Ratte wurde durch Calcium-Niederschlag bei hohem pH untersucht. Das Gewebe wurde für elektronmikroskopische Untersuchungen in gepuffertem ATP-enthaltenden Paraformaldehyd fixiert, um die Hemmung von Fermentaktivität zu vermindern. Die Fermentreaktion wurde nach einer Modifikation nach Padykula und Herman durchgeführt, wobei Calcium als Fermentaktivator und „Fang-Ion“ für das erzeugte Phosphat diente.

In den Muskelfasern verlagerte sich das Reaktionsprodukt im sarkoplasmatischen Reticulum und in den Z-Bänden, dagegen reagierten die A-Bände allgemein nicht. Die Reaktion lief nur mit ATP als Substrat. Die Kontrollversuche ohne ATP oder Calcium und andere mit ADP, AMP, CMP und Na-β-Glycerophosphat ergaben regelmäßig negative Ergebnisse. Durch Zugabe von di-Natriumphosphat, bis ein unvollkommenes Reaktionsmedium erreicht wurde, mit Calcium aber ohne ATP, konnte Calciumphosphat nicht innerhalb der Muskelfasern niedergeschlagen werden.

Die Intensität der Reaktion variiert in verschiedenen Muskelfasern, obwohl innerhalb jeder gegebenen Faser sie verhältnismäßig konstant erschien.

Summary

Ultrastructural localization of ATPase activity in rat skeletal muscle was studied by calcium precipitation at high pH. Tissue was fixed for electron microscopy in buffered paraformaldehyde that contained ATP in order to minimize inhibition of enzyme activity. The enzyme reaction was carried out by a modification of the method of Padykula and Herman, in which calcium serves as both enzyme activator and capture ion for the generated phosphate.

Within the muscle fibers the reaction product was deposited in the sarcoplasmic reticulum and the Z-bands, whereas the A-bands were generally nonreactive. The reaction occurred only with ATP as substrate; controls omitting ATP or calcium and others substituting ADP, AMP, CMP, and sodium-β-glycerophosphate gave consistently negative results. Calcium phosphate could not be precipitated within muscle fibers by addition of dibasic sodium phosphate to an incomplete reaction medium containing calcium but lacking ATP.

The intensity of the reaction varied greatly in different muscle fibers, though within any given fiber it appeared relatively constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Barden, H., andS. S. Lazarus: Some histochemical characteristics of ATPase of mouse striated muscle. J. Histochem. Cytochem.12, 11–12 (1964a).

    Google Scholar 

  • — Histochemistry of adenosine triphosphatase in normal and dystrophic mouse muscle. Lab. Invest.13, 1345–1358 (1964b).

    PubMed  CAS  Google Scholar 

  • Bennett, H. S.: The structure of striated muscle. In: The Structure and Function of Muscle. I. Structure, chap. 6, ed. byG. H. Bourne, p. 137. New York: Academic Press, Inc. 1960.

    Google Scholar 

  • Beyer, J. M.de, J. C. H.de Man, andJ. P. Persijn: ATPase activity on the intercalated disc and Cz bands of mouse heart muscle. J. Cell Biol.13, 452–456 (1962).

    Article  PubMed  Google Scholar 

  • Costantin, L. L., C. Franzini-Armstrong, andR. J. Podolsky: Localization of calciumaccumulating structures in striated muscle fibers. Science147, 158–160 (1965).

    Article  PubMed  CAS  Google Scholar 

  • —, andR. J. Podolsky: Calcium localization and the activation of striated muscle fibers. Fed. Proc.24, 1141–1145 (1965).

    PubMed  CAS  Google Scholar 

  • —, andL. W. Tice: Calcium activiation of frog slow muscle fibres. J. Physiol. (Lond.)188, 261–271 (1967).

    CAS  Google Scholar 

  • Engel, A. G., andL. W. Tice: Cytochemistry of phosphatases of the sarcoplasmic reticulum. I. Biochemical studies. J. Cell Biol.31, 473–487 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Engel, W. K.: The essentiality of histo-and cytochemical studies of skeletal muscle in the investigation of neuromuscular disease. Neurology (Minneap.)12, 778–794 (1962).

    Google Scholar 

  • — Adenosine triphosphatase of sarcoplasmic reticulum, triads and sarcolemma identified histochemically. Nature (Lond.)200, 588–589 (1963).

    Article  CAS  Google Scholar 

  • Essner, E., A. B. Novikoff, andN. Quintana: Nucleoside phosphatase activity in rat cardiac muscle. J. Cell Biol.25, 201–215 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Freiman, D. G., andN. Kaplan: Studies on the histochemical differentiation of enzymes hydrolyzing adenosine triphosphate. J. Histochem. Cytochem.8, 159–170 (1960).

    PubMed  CAS  Google Scholar 

  • Gauthier, G. F.: On the localization of sarcotubular ATPase activity in mammalian skeletal muscle. Histochemie11, 97–111 (1967).

    Article  PubMed  CAS  Google Scholar 

  • —, andH. A. Padykula: Cytochemical studies of adenosine triphosphatase activity in the sarcoplasmic reticulum. J. Cell Biol.27, 252–260 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Giacomelli, F., C. Bibbiani, E. Bergamini, andC. Pellegrino: Two ATPases in the sarcoplasmic reticulum of skeletal muscle fibres. Nature (Lond.)213, 679–682 (1967).

    Article  CAS  Google Scholar 

  • Gillis, J. M., andS. G. Page: Localization of ATPase activity in skeletal muscle and probable sources of artifact. J. Cell Sci.2, 113–118 (1967).

    PubMed  CAS  Google Scholar 

  • Gomori, G.: Microtechnical demonstration of phosphatase in tissue sections. Proc. Soc. exp. Biol. (N.Y.)42, 23–26 (1939).

    CAS  Google Scholar 

  • — The distribution of phosphatase in normal organs and tissues. J. cell. comp. Physiol.17, 71–83 (1941).

    Article  CAS  Google Scholar 

  • Gordon, G. B., H. M. Price, andJ. M. Blumberg: Electron microscopic localization of phosphatase activities within striated muscle fibers. Lab. Invest.16, 422–435 (1967).

    PubMed  CAS  Google Scholar 

  • Hasselbach, W.: Relaxation and the sarcotubular calcium pump. Fed. Proc.23, 909–912 (1964).

    PubMed  CAS  Google Scholar 

  • —, u.M. Makinose: Die Calciumpumpe der „Erschlaffungsgrana“ des Muskels und ihre Abhängigkeit von der ATP-Spaltung. Biochem. Z.333, 518–528 (1961).

    PubMed  CAS  Google Scholar 

  • — Über den Mechanismus des Calciumtransportes durch die Membranen des sarkoplasmatischen Reticulum. Biochem. Z.339, 94–111 (1963).

    PubMed  CAS  Google Scholar 

  • Hayashi, M., andD. G. Freiman: An improved method of fixation for formalin-sensitive enzymes with special reference to myosin adenosine triphosphatase. J. Histochem. Cytochem.14, 577–581 (1966).

    PubMed  CAS  Google Scholar 

  • Hoei, S. H., andJ. P. Chang: Histochemical study of adenosine triphosphatase in cytoplasm. J. Histochem. Cytochem.11, 71–79 (1963).

    Google Scholar 

  • —, andM. Takahashi: An electron microscopic study of adenosinetriphosphate-splitting enzyme in rat skeletal muscle by means of the section freeze substitution technique. Cytologia (Tokyo)28, 331–341 (1963).

    Google Scholar 

  • Lazarus, S. S. andH. Barden: Histochemistry and electron microscopy of mitochondrial adenosinetriphosphate. J. Histochem. Cytochem.10, 285–293 (1962).

    CAS  Google Scholar 

  • — Ultramicroscopic localization of mitochondrial adenosinetriphosphatase. J. Ultrastruct. Res.10, 189–193 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Liebecq, C., etM. Jacquemotte-Louis: Nucléotides de l’adénine, IV: Instabilité des complexes magnésiens de l’adénosine triphosphate. Bull. Soc. Chim. biol. (Paris)40, 67–85 (1958).

    CAS  Google Scholar 

  • Lowenstein, J. M.: Transphosphorylation catalyzed by bivalent metal ions. Biochem. J.70, 222–230 (1958).

    PubMed  CAS  Google Scholar 

  • Man, J. C. H.de, M. M. de Beyer, andJ. P. Persijn: Fine structural morphology and ATP-ase reaction in heart muscle at various sarcomere lengths. Histochemie3, 269–282 (1963).

    Article  Google Scholar 

  • Moses, H. L., andD. L. Beaver: The effect of ATP hydrolysis by lead ions on the histochemical localization of ATP-ase activity. Anat. Rec.154, 390–391 (1966).

    Google Scholar 

  • —, andA. S. Rosenthal: On the significance of lead-catalyzed hydrolysis of nucleoside phosphates in histochemical systems. (Letter to the Editor.) J. Histochem. Cytochem.15, 354–355 (1967).

    PubMed  CAS  Google Scholar 

  • D. L. Beaver, andS. S. Schuffman: Lead ion and phosphatase histochemistry. II. Effect of adenosine triphosphate hydrolysis by lead ion on the histochemical localization of adenosine triphosphatase activity. J. Histochem. Cytochem.14, 702–710 (1966).

    PubMed  CAS  Google Scholar 

  • Novikoff, A. B.: Enzyme localizations with Wachstein-Meisel procedures: Real or artifact. (Letter to the Editor.) J. Histochem. Cytochem.15, 353–354 (1967).

    PubMed  CAS  Google Scholar 

  • D. H. Hausman, andE. Podber: Localization of adenosine triphosphatase in liver:In situ staining and cell fractionation studies. J. Histochem. Cytochem.6, 61–71 (1958).

    PubMed  CAS  Google Scholar 

  • Padykula, H. A., andG. P. Gauthier: Cytochemical studies of the adenosine triphosphatases in skeletal muscle fibers. J. Cell Biol.18, 87–107 (1963).

    Article  PubMed  CAS  Google Scholar 

  • —, andE. Herman: Factors affecting the activity of adenosine triphosphatase and other phosphatases as measured by histochemical techniques. J. Histochem. Cytochem.3, 161–169 (1955a).

    PubMed  CAS  Google Scholar 

  • — The specificity of the histochemical method for adenosine triphosphatase. J. Histochem. Cytochem.3, 170–183 (1955b).

    PubMed  CAS  Google Scholar 

  • Pease, D. C., D. J. Jenden, andJ. N. Howell: Calcium uptake in glycerol-extracted rabbit psoas muscle fibers. II. Electron microscopic localization of uptake sites, J. cell. comp. Physiol.65, 141–153 (1965).

    Article  CAS  Google Scholar 

  • Podolsky, R. J.: Deposit formation in muscle fibers following contraction in the presence of lead. J. Cell Biol.39, 197–201 (1968).

    Article  PubMed  CAS  Google Scholar 

  • —, andL. L. Costantin: Regulation by calcium of the contraction and relaxation of muscle fibers. Fed. Proc.23, 933–939 (1964).

    PubMed  CAS  Google Scholar 

  • Porter, K. R., andG. E. Palade: Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J. biophys. biochem. Cytol.3, 269–300 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Price, H. M.: The skeletal muscle fiber in the light of electron microscopic studies. Amer. J. Med.35, 589–605 (1963).

    Article  PubMed  CAS  Google Scholar 

  • E. J. Howes Jr.,D. B. Sheldon, O. D. Hutson, R. T. Fitzgerald, J. M. Blumberg, andC. M. Pearson: An improved biopsy technique for light and electron microscopic studies of human skeletal muscle. Lab. Invest.14, 194–199 (1965).

    PubMed  CAS  Google Scholar 

  • Rosenthal, A. S.: Nucleoside phosphate hydrolysis by lead ion. Anat. Rec.154, 413–414 (1966).

    Google Scholar 

  • H. L. Moses, D. L. Beaver, andS. S. Schuffman: Lead ion and phosphatase histochemistry. I. Nonenzymatic hydrolysis of nucleoside phosphates by lead ion. J. Histochem. Cytochem.14, 698–701 (1966).

    PubMed  CAS  Google Scholar 

  • Rostgaard, J., andO. Behnke: Fine structural localization of adenine nucleoside phosphatase activity in sarcoplasmic reticulum and the T system of the rat myocardium. J. Ultrastruct. Res.12, 579–591 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Sommer, J. R., andW. Hasselbach: The effect of glutaraldehyde and formaldehyde on the calcium pump of the sarcoplasmic reticulum. J. Cell Biol.34, 902–905 (1967).

    Article  PubMed  CAS  Google Scholar 

  • —, andM. Spach: Electronmicroscopic localization of ATP-ase in myofibrils and sarcoplasmic reticulum of normal and abnormal dog hearts. Fed. Proc.22 (1), 195 (1963).

    Google Scholar 

  • — Electron microscopic demonstration of adenosinetriphosphatase in myofibrils and sarcoplasmic membranes of cardiac muscle of normal and abnormal dogs. Amer. J. Path.44, 491–505 (1964).

    PubMed  CAS  Google Scholar 

  • Stromer, M. H., D. J. Hartshorne, H. Mueller, andR.V. Rice: The effect of various protein fractions on Z-and M-line reconstitution. J. Cell Biol.40, 167–178 (1969).

    Article  PubMed  CAS  Google Scholar 

  • —, andR. V. Rice: Removal and reconstitution of Z-line material in striated muscle. J. Cell Biol.35, C23–28 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu, H.: Histochemische Untersuchungen der Phosphatase und deren Verteilung in verschiedenen Organen und Gewebe. Trans. Soc. Path. Jap.29, 492–498 (1939).

    Google Scholar 

  • Tetas, M., andJ. M. Lowenstein: The effect of bivalent metal ions on the hydrolysis of adenosine di-and triphosphate. Biochemistry2, 350–357 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Tice, L. W., andR. J. Barrnett: The adenosinetriphosphatases of striated muscle. J. Histochem. Cytochem.8, 352 (1960).

    Google Scholar 

  • — Fine structural localization of adenosinetriphosphatase activity in heart muscle myofibrils. J. Cell Biol.15, 401–416 (1962).

    Article  PubMed  CAS  Google Scholar 

  • —, andA. G. Engel: Cytochemistry of phosphatases of sarcoplasmic reticulum. II. In situ localization of the Mg-dependent enzyme. J. Cell Biol.31, 489–499 (1966).

    Article  PubMed  CAS  Google Scholar 

  • —, andD. S. Smith: The localization of myofibrillar ATPase activity in the flight muscles of the blowfly,Calliphora erythrocephala. J. Cell Biol.15, 121–135 (1965).

    Article  Google Scholar 

  • Wachstein, M., andE. Meisel: Histochemistry of hepatic phosphatases at a physiologic pH. Amer. J. clin. Path.27, 13–23 (1957).

    CAS  Google Scholar 

  • Weber, A., R. Herz, andI. Reiss: Role of calcium in contraction and relaxation of muscle. Fed. Proc.23, 896–900 (1964).

    PubMed  CAS  Google Scholar 

  • Williams, R. J. P.: Coordination, chelation and catalysis. In: The Enzymes, ed. byP. D. Boyer, H. Lardy, andK. Myrbäch, ed. 2, p. 391. New York: Academic Press, Inc. 1959.

    Google Scholar 

  • Winegrad, S.: Role of intracellular calcium movements in excitation-contraction coupling in skeletal muscle. Fed. Proc.24, 1146–1152 (1965).

    PubMed  CAS  Google Scholar 

  • Zebe, E.: Zur Lokalisation ATP-spaltender Reaktionen im „Sarcoplasmatischen Reticulum“ quergestreifter Muskeln. Histochemie5, 32–43 (1965).

    Article  PubMed  CAS  Google Scholar 

  • — Zur Spaltung von Adenosinetriphosphate durch die Z-Scheiben der indirekten Flugmuskeln von Phormia Regina (Diptera). Experientia (Basel)22, 96–97 (1966).

    CAS  Google Scholar 

  • —, andH. Falk: Elektronenmikroskopische Lokalisation ATP-spaltender Reaktionen in quergestreiften Muskeln. Exp. Cell Res.31, 340–344 (1963).

    Article  PubMed  CAS  Google Scholar 

  • — Über die Spaltung von Adenosintriphosphat in isolierten Myofibrillen aus Insektenflugmuskeln. Histochemie4, 161–180 (1964).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported in part by a research contract, Project No. 3A025601A822, from the Medical Research and Development Command, Washington, D. C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vye, M.V., Fischman, D.A. & Hansen, J.L. Ultrastructural localization of adenosinetriphosphatase activity in skeletal muscle by calcium precipitation at high pH. Virchows Arch. Abt. B Zellpath. 3, 307–323 (1969). https://doi.org/10.1007/BF02901943

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02901943

Keywords

Navigation