Skip to main content
Log in

Effects of dissolved organic matter from sewage sludge on the atrazine sorption by soils

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The effects of dissolved organic matter (DOM), water soluble organic matter derived from sewage sludge, on the sorption of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-trazine) by soils were studied using a batch equilibrium technique. Six paddy soils, chosen so as to have different organic carbon contents, were experimented in this investigation. Atrazine sorption isotherms on soils were described by the linear equation, and the distribution coefficients without DOM (Kd) or with DOM (Kd *) were obtained. Generally, the values of Kd */Kd initially increased and decreased thereafter with increasing DOM concentrations of 0–60 mg DOC · L−1 in soil-solution system form. Critical concentrations of DOM (DOMnp) were obtained where the value of Kd * was equal to Kd. The presence of DOM with concentrations lower than DOMnp promoted atrazine sorption on soils (Kd * > Kd), whereas the presence of DOM with concentrations higher than DOMnp tended to inhibit atrazine sorption (Kd * < Kd). Interestingly, DOMnp for tested soils was negatively correlated to the soil organic carbon content, and the maximum of Kd */Kd (i.e.K max) correlated positively with the maximum of DOM sorption on soil (Xmax). Further investigations showed that the presence of hydrophobic fraction of DOM evidently promoted the atrazine sorption on soils, whereas the presence of hydrophilic DOM fraction obviously tended to inhibit the atrazine sorption. Interactions of soil surfaces with DOM and its fractions were suggested to be the major processes determining atrazine sorption on soils. The results of this work provide a reference to the agricultural use of organic amendment such as sewage sludge for improving the availability of atrazine in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chiou, C. T., Porter, P. E., Schmedding, D. W., Partition equilibria of non-ionic organic compounds between soil organic matter and water, Environ. Sci. Technol., 1983, 17: 227–231.

    Article  CAS  Google Scholar 

  2. Shawhhem, B. L., Brown, K., Reactions and Movement of Organic Chemicals in Soils, Madison, WI: Soil Sci. Soc. Am. Inc., 1989, 474.

    Google Scholar 

  3. Gao, Y. Z., Zhu, L. Z., Phytoremediation and its models for organic contaminated soils, J. Environ. Sci., 2003, 15: 302–310.

    CAS  Google Scholar 

  4. Guo, L., Bicki, T. J., Felsot, A. S. et al., Sorption and movement of alcohol in soil modified by carbon-rich wasters, J. Environ. Qual., 1993, 22: 186–194.

    CAS  Google Scholar 

  5. Celis, R., Barriuso, E., Houot, S., Effect of liquid sewage addition on atrazine sorption and desorption by soil, Chemosphere, 1998, 37(6): 1091–1107.

    Article  CAS  Google Scholar 

  6. Cox, L., Celis, R., Hermosin, M. C. et al., Effect of organic amendments on Herbicide sorption as related to the nature of the dissolved organic matter, Environ. Sci. Technol., 2000, 34: 4600–4605.

    Article  CAS  Google Scholar 

  7. Totsche, K. U., Danzer, J., Kögel-Knabner, I., Dissolved organic matter-enhanced retention of polycyclic aromatic hydrocarbons in soil miscible displacement experiments, J. Environ. Qual., 1997, 26: 1090–1100.

    CAS  Google Scholar 

  8. Barriuso, E., Baer, U., Caiver, R., Dissolved organic matter and adsorption-desorption of dimefuron, atrazine, and carbetamide by soils, J. Environ. Qual., 1992, 21: 359–367.

    Article  CAS  Google Scholar 

  9. Torrents, A., Jayasundera, S., The sorption of nonionic pesticide onto clays and the influence of natural organic carbon, Chemosphere, 1997, 35: 1549–1568.

    Article  CAS  Google Scholar 

  10. Entield, C. G., Bengtson, G., Lindquist, R., Influence of macromolecules on chemical transport, Environ. Sci. Technol., 1989, 23: 1278–1286.

    Article  Google Scholar 

  11. Spark, K. M., Swift, R. S., Effect of soil composition and dissolved organic matter on pesticide sorption, Sci. Total Environ., 2002, 298: 147–151.

    Article  PubMed  CAS  Google Scholar 

  12. Barriuso, E., Calvet, R., Houot, S., Field study of the effect of sewage sludge application on atrazine behaviour in soil, Int. J. Environ. Anal. Chem., 1985, 59: 107–121.

    Google Scholar 

  13. Kögel-Knabner, I., Totsche, K. U., Raber, B., Desorption of polycyclic aromatic hydrocarbons from soil in the presence of dissolved organic matter effect of solution, composition and aging, Environ. Sci. Technol., 2000, 29: 906–916.

    Google Scholar 

  14. Raber, B., Kögel-Knabner, I., Stein, C. et al., Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils, Chemosphere, 1998, 36(1): 79–97.

    Article  CAS  Google Scholar 

  15. Kaiser, K., Guggenberger, G., The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils, Organic Geochemistry, 2000, 31: 711–725.

    Article  CAS  Google Scholar 

  16. Kretzschmar, R., Hesterberg, D., Sticher, H., Effect of adsorbed humic acid on surface charge and flocculation of kaolinite, Soil Sci. Soc. Am. J., 1997, 61: 101–108.

    CAS  Google Scholar 

  17. Murphy, M. E., Zachara, J. M., Smith, S. C. et al., Interaction of hydrophobic organic compounds with mineral-bound humic substances, Environ. Sci. Technol., 1994, 28: 1291–1299.

    Article  CAS  Google Scholar 

  18. Raber, B., Kögel-Knabner, I., Influence of origin and properties of dissolved organic matter on the partition of polycyclic aromatic hydrocarbons (PAHs), Europ. J. Soil Sci., 1997, 48: 443–455.

    Article  CAS  Google Scholar 

  19. Chiou, C. T., Malcolm, R. L., Brinton, T. L. et al., Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids, Environ. Sci. Technol., 1986, 20: 502–508.

    Article  CAS  PubMed  Google Scholar 

  20. Kukonnen, J., McCarthy, J. F., Oikari, A., Effects of XAD-8 fractions of dissolved organic carbon on the sorption and bioavailability of organic micro pollutants, Arch. Environ. Contam. Toxico., 1990, 19: 551–557.

    Article  Google Scholar 

  21. Maxin, C. R., Kögel-Knabner, I., Partitioning of polycyclic aromatic hydrocarbons (PAHs) to water-soluble soil organic matter, Europ. J. Soil Sci., 1995, 46: 193–204.

    Article  CAS  Google Scholar 

  22. Johnson, W. P., Amy, G. L., Facilitated transport and enhanced desorption of polycyclic aromatic hydrocarbons by natural organic matter in aquifer sediments, Environ. Sci. Technol., 1995, 29: 807–817.

    Article  CAS  Google Scholar 

  23. Gao, J. P., Maguhn, J., Spitzauer, P. et al., Distribution of pesticides in the sediment of the small Teufelweiher pond, Water Res., 1997, 31: 2811–2819.

    Article  CAS  Google Scholar 

  24. Herry, V. M., Association of hydrophobic organic contaminants with soluble organic matter: evaluation of the database of Kdoc values, Adv. Environ. Res., 2002, 6: 577–593.

    Article  Google Scholar 

  25. Gamble, D. S., HaniH, M. I., Zienius, R. H., Solution phase complexing of atrazine by fulvic acid: A batch ultrafiltration technique, Anal. Chem., 1989, 59: 727–731.

    Google Scholar 

  26. Heather, M. L., Alok Bhandari, Atrazine sorption on surface soils: time-dependent phase distribution and apparent desorption hysteresis, Water Res., 2003, 37: 1644–1654.

    Article  CAS  Google Scholar 

  27. Aiken, G. R., Leenheer, J. A., Isolation and chemical characterization of dissolved and colloidal organic matter, Chem. Ecol., 1993, 8: 135–151.

    Article  CAS  Google Scholar 

  28. Shen, Y. H., Sorption of natural dissolved organic matter on soil, Chemosphere, 1999, 38(7): 1505–1515.

    Article  CAS  Google Scholar 

  29. Rav-Acha, C., Rebhm, M., Binding of organic solutes to dissolved humic substances and its effects on adsorption and transport in the aquatic environment, Wat. Res., 1992: 1645–1654.

  30. Celis, R., Hermosin, M. C., Cox, L. et al., Sorption of 2,4-dichlorophenoxyacelic acid by model soil particles simulating naturally occurring soil colloids, Environ. Sci. Technol., 1999, 33: 1200–1206.

    Article  CAS  Google Scholar 

  31. Xing, B., Pignatello, J. J., Gigliotti, B., Competitive sorption between atrazine and other organic compounds in soils and model sorbents, Environ. Sci. Technol., 1996, 30(8): 2432–2440.

    Article  CAS  Google Scholar 

  32. Kaiser, K., Zech, W., Soil dissolved organic matter sorption as influenced by organic and sesquioxide coating and sorbed sulfate, Soil Sci. Soc. Am. J., 1998, 62: 129–136.

    CAS  Google Scholar 

  33. Kaiser, K., Zech, W., Competitive sorption of dissolved organic matter fractions to soils and related mineral phases, Soil Sci. Soc. Am. J., 1997, 61: 64–69.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, W., Xu, J. & Gao, Y. Effects of dissolved organic matter from sewage sludge on the atrazine sorption by soils. Sci. China Ser. C.-Life Sci. 48 (Suppl 1), 57–66 (2005). https://doi.org/10.1007/BF02889802

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02889802

Keywords

Navigation