Skip to main content
Log in

Acidification power: Indicator of metabolic activity and autolytic changes inSaccharomyces cerevisiae

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Acidification power, defined as the sum of the spontaneous pH change determined after suspending yeast cells in water and the substrate-induced pH change after addition of glucose to the resulting suspension, reflects the level of cellular energy sources. Its use as an indicator of metabolic state of the cells was tested during a 120-h aerobic starvation. Its changes coincided with changes in cell viability, initial rate of endogenous oxygen consumption rate, cell ATP, extra- and intracellular buffering capacity, and the ability of cell-free extract to produce acidity by glucose fermentation. It was used as a sensitive marker of metabolic changes occurring during starvation, on treatment with glycolytic and respiratory inhibitors, and at elevated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold W.N.: Volume and enzyme content of the periplasmic space in yeast.Physiol. Chem. Phys. 5, 117 (1973).

    CAS  Google Scholar 

  • Betz H.: Inhibition of protein synthesis stimulates intracellular protein degradation in growing yeast cells.Biochem. Biophys. Res. Commun. 72, 121 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Conway E.J.:Microdiffusion Analysis and Volumetric Errors. Crosby Lockwood, London 1957.

    Google Scholar 

  • Halvorson H.: Intracellular protein and nucleic acid turnover in resting yeast cells.Biochim. Biophys. Acta 27, 255 (1958a).

    Article  PubMed  CAS  Google Scholar 

  • Halvorson H.: Studies on protein and nucleic acid turnover in growing cultures of yeast.Biochim. Biophys. Acta 27, 267 (1958b).

    Article  PubMed  CAS  Google Scholar 

  • Hemmings B. A.: Evidence for the degradation of nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase ofCandida utilis during rapid enzyme inactivation.J. Bacteriol. 133, 867 (1978).

    PubMed  CAS  Google Scholar 

  • Kalbhen D.A., Koch H.J.: Metodische Untersuchungen zur quantitativen Mikrobestimmung von ATP in biologischem Material mit dem Firefly-Enzymsystem.Z. Klin. Chem. Klin. Biochem,5, 299 (1967).

    PubMed  CAS  Google Scholar 

  • Kotyk A., Sigler K.: Transmembrane movements of protons in simple eukaryotic cells.Studia Biophys. 84, 55 (1981).

    CAS  Google Scholar 

  • Low’ry O.H., Rosenbrough N.J., Farr A.L., Randall R.J.: Protein measurement with the Folin phenol reagent.J. Biol. Cheem. 193, 265 (1951).

    CAS  Google Scholar 

  • Mazón M.J.: Effect of glucose starvation on the nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase of yeast.J. Bacteriol. 133, 780 (1978).

    PubMed  Google Scholar 

  • McElroy W.D.: Crystalline firefly lucipherase, p. 445 inMethods in Enzymology, Vol. VI (S.P. Colowick, N.O. Kaplan, Eds). Academic Press, New York — London 1963.

    Chapter  Google Scholar 

  • Páca J.: Reserve carbohydrate metabolism and cell survival in aerobically starving baker’s yeast.J. Inst. Brew. 87, 147 (1981).

    Google Scholar 

  • Riemersma J.C., Alsbach E.J.J.: Proton translocation during anaerobic energy production inSaccharomyces cerevisiae.Biochim. Biophys. Acta 339, 274 (1974).

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro A., Sancho E.D.: Cation exchanges of yeast in the absence of magnesium.Biochim. Biophys.Acta 552, 322 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Sigler K., Opekarová M., Knotková A.: Spontaneous and substrate-induced proton extrusion in yeast.15th Annivers.Congr.Czech.Microbiol.Soc., Abstr. 0–11, Gottwaldov 1980.

  • Sigler K., Knotková A., Kotyk A.: Factors governing substrate-induced generation and extrusion of protons in the yeastSaccharomyces cerevisiae.Biochim. Biophys. Acta 643, 572 (1981a).

    Article  PubMed  CAS  Google Scholar 

  • Sigler K., Kotyk A., Knotková A., Opekarová M.: Processes involved in the creation of buffering capacity and in substrate-induced proton extrusion in the yeastSaccharomyces cerevisiae.Biochim. Biophys. Acta 643, 583 (1981b).

    Article  PubMed  CAS  Google Scholar 

  • Sigler K., Opekarová M., Kotyk A.: Determination of metabolic activity of glucose-metabolizing yeast cells.Czech. Pat. 215 861 (1982).

    Google Scholar 

  • Wolf D.H.: Control of metabolism in yeast and other lower eukaryotes through the action of proteinases, p. 267 inAdvances in Microbial Physiology, Vol.21 (A.H. Rose, J.G. Morris, Eds). Academic Press, London 1980.

    Google Scholar 

  • Wolf D.H., Holzer H.: Proteolysis in yeast, p. 431 inMicroorganisms and Nitrogen Sources (J.W. Payne, Ed.). John Wiley & Sons, New York 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opekarová, M., Sigler, K. Acidification power: Indicator of metabolic activity and autolytic changes inSaccharomyces cerevisiae . Folia Microbiol 27, 395–403 (1982). https://doi.org/10.1007/BF02876450

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02876450

Keywords