Skip to main content
Log in

Botanical limnological methods with special reference to the algae

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  1. Aach, H. G. 1953. Über Abbau und Regeneration der Chloroplastenfarbstoffe beiChlorella. Arch. Mikrobiol.19: 166–173.

    Article  PubMed  CAS  Google Scholar 

  2. Abderhalden, E. [ed.] 1925. Handbuch der biologischen Arbeits-methoden. Abt. IX. Teil 2. Methoden der Süsswasserbiologic

  3. Äberg, B., andRodhe, W. 1942. Über die Milieufaktoren in einigen südschwedischen Seen. Symb. Bot. Upsal.5 (3): 1–256.

    Google Scholar 

  4. Ahlstrom, E. H. 1952. Biological instruments.In: Symposium on oceanographic instrumentation. Div. Phys. Sci., Nat Acad. Sci.-Nat. Res. Counc, U.S.A. Publ.309: 36–47.

    Google Scholar 

  5. Aleem, A. A. 1949. A quantitative method for estimating the periodicity of diatoms. Jour. Mar. Biol. Assoc. U.K.28: 713–717.

    Article  Google Scholar 

  6. —. 1955. Measurement of plankton populations by triphenyltetrazolium chloride. Kieler Meeresforsch.11: 160–173.

    Google Scholar 

  7. Algéus, S. 1951. Studies on the cultivation of algae in artificial light. Physiol. Plant.4: 742–753.

    Article  Google Scholar 

  8. Al Kholy, A. A. 1955. On the assimilation of phosphorus inChlorella pyrenoidosa. Physiol. Plant.9: 137–143.

    Article  Google Scholar 

  9. Allen, E. J. 1919. A quantitative study of plankton. Jour. Mar. Biol. Assoc. U.K.12: 1–8.

    Article  Google Scholar 

  10. Allen, M. B. 1952. The cultivation of Myxophyceae. Arch. Mikrobiol.17: 34–53.

    Article  CAS  Google Scholar 

  11. Allen, W. E. 1920. A quantitative and statistical study of the plankton of the San Joaquin River and its tributaries in and near Stockton, California, in 1913. Univ. Calif., Publ. Zool.22: 1–292.

    Google Scholar 

  12. —. 1921. A brief study of the range of error in microenumeration. Trans. Amer. Micr. Soc.40: 14–25.

    Article  Google Scholar 

  13. —. 1930. Methods in quantitative research of marine microplankton. Scripps. Inst. Oceanogr., Bull.2: 319–329.

    Google Scholar 

  14. Allgeier, R. J., Hafford, B. C., andJuday, C. 1941. Oxidation-reduction potentials and pH of lake waters and lake sediments. Trans. Wis. Acad. Sci., Arts & Lett.33: 115–133.

    CAS  Google Scholar 

  15. Älvik, G. 1934. Plankton-Algen norwegischer Austernpollen. II. Licht und Assimilation in verschiedenen Tiefen. Bergens Mus. Aarb.10: 1–90.

    Google Scholar 

  16. Ambühl, H. 1955. Die praktische Anwendung der elektrochemischen Sauerstoffbestimmung im Wasser. I. Grundlagen: Langzeitmessung. Schweiz. Zeits. Hydrol.17: 123–155.

    Article  Google Scholar 

  17. American Public Health Association. 1955. Standard methods for the examination of water, sewage, and industrial wastes. Tenth Ed. 522 pp.

  18. American Society of Limnology & Oceanography. 1949. Sources of limnological and oceanographic apparatus and supplies. Limnol. Soc. Amer., Spec. Publ. 1., revised and enlarged edition, 8 pp. (also later supplement).

  19. Anderson, E. R. 1952. Energy-budget studies. U.S. Geol. Surv., Circ.229: 71–119.

    Google Scholar 

  20. Anderson, G. C., Comita, G. W., andEngstrom-Heg, V. 1955. A note on the phytoplankton-zooplankton relationships in two lakes in Washington. Ecology36: 757–759.

    Article  Google Scholar 

  21. Anonymous. 1952. Classified list of Publications. IX. Physics and chemistry. D. Light. Jour. Mar. Biol. Assoc. U.K.30: 620–623.

  22. -. 1954. Publicazioni di Francesco Vercelli. D. Propagazione della luce nelle acque. Arch. Oceanogr. Limnol. [Roma]9: 5.

  23. Arnon, D. I. 1955. Some recent advances in the study of essential micronutrients for green plants. Rapp. 8th Int. Bot. Congr. 1954. Sect.11: 73–80.

    Google Scholar 

  24. Assman, A. V. 1953. Rol vodoroslevykh obrastanii v obrazovanii organicheskogo veshchestva v Glubokom ozere. Trud. vsesoyuz. gidrobiol. Obshch.5: 138–157.

    Google Scholar 

  25. Atkins, W. R. G. 1932. Solar radiation and its transmission through air and water. Jour. Cons. Int. Expl. Mer7: 171–211.

    Google Scholar 

  26. —. 1945a. Daylight and its penetration into the sea. Trans. Ilium. Eng. Soc.10: 1–12.

    Google Scholar 

  27. —. 1945b. Autotrophic flagellates as the major constituent of the oceanic phytoplankton. Nature [London]156: 446–447.

    Article  Google Scholar 

  28. —,Ball, N. G., andPoole, H. H. 1937. The photoelectric measurement of the diurnal variations in daylight in temperate and tropical regions. Proc. Roy. Soc. A.160: 526–539.

    Article  Google Scholar 

  29. —,Clarke, G. L., Pettersson, H., Poole, H. H., Utterback, C. L., andÅngström, A. 1938. Measurement of submarine daylight. Jour. Cons. Int. Expl. Mer13: 37–57.

    Google Scholar 

  30. — andEllison, M. A. 1947. Photoelectric measurements of the seasonal variations in daylight at Plymouth, from 1938 to March 1941, compared with the years 1930 to 1937. Proc. Roy. Soc. A.191: 467–484.

    Article  CAS  Google Scholar 

  31. — andJenkins, P. G. 1952. Photoelectric measurements of the seasonal variations in daylight at Plymouth from 1947 to 1949. Quart. Jour. Roy. Met. Soc.78: 70–75.

    Article  Google Scholar 

  32. ——. 1953. Seasonal changes in the phytoplankton during the year 1951–52 as indicated by spectrophotometric chlorophyll estimations. Jour. Mar. Biol. Assoc. U.K.31: 495–508.

    Article  Google Scholar 

  33. — andParke, M. 1951. Seasonal changes in the phytoplankton as indicated by chlorophyll estimations. Jour. Mar. Biol. Assoc. U.K.29: 609–618.

    Article  Google Scholar 

  34. — andPoole, H. H. 1936. The photoelectric measurement of the diurnal and seasonal variations in daylight and a globe integrating photometer. Roy. Soc. London, Phil. Trans. A.235: 245–272.

    Article  Google Scholar 

  35. ——. 1952. An experimental study of the scattering of light by natural waters. Roy. Soc. London, Proc. B.140: 321–338.

    Article  CAS  Google Scholar 

  36. ——. 1954. The angular scattering of blue, green and red light by sea water. Sci. Proc. Roy. Dublin Soc. ils.26: 313–324.

    Google Scholar 

  37. ——, andWarren, F. J. 1949. A balance-by-depth method for the photoelectric measurement of the vertical extinction coefficient of water. Jour. Mar. Biol. Assoc. U.K.28: 751–755.

    Article  Google Scholar 

  38. Aurén, T. E. 1937. Luminous efficiency of solar radiation. Medd. Met. Hydr. Anst. Uppsala16:

  39. —. 1939. Radiation climate in Scandinavian peninsula. Ark. Mat. Astr. Fys.26A (20): 1–50.

    Google Scholar 

  40. —. 1953. Studies of solar radiation. Ark. Geofys.1: 395–439.

    Google Scholar 

  41. Baatz, I. 1941. Die Bedeutung der Lichtqualität für Wachstum und Stoffproduktion planktischer Meeresdiatomeen. Planta31: 726–766.

    Article  CAS  Google Scholar 

  42. Bachmann, H. 1903.Cyclotella bodanica var.lemanica O. Müller im Vierwaldstättersee und ihre Auxosporenbildung. Jahrb. Wiss. Bot.39: 106–133.

    Google Scholar 

  43. —. 1926. Der Mikrofiltrierapparat von Gimesi. Schweiz. Zeits. Hydrol.3: 271–276.

    Article  Google Scholar 

  44. Bachrach, E., andLefèvre, M. 1928. Disparition de la carapace siliceux chez les Diatomées. Comp. Rend. Soc. Biol. [Paris]98: 1510–1511.

    Google Scholar 

  45. Ballantine, D. 1953. Comparison of the different methods of estimating nanoplankton. Jour. Mar. Biol. Assoc. U.K.32: 129–147.

    Article  Google Scholar 

  46. Barker, H. A. 1935a. Photosynthesis in diatoms. Arch. Mikrobiol.6: 141–156.

    Article  CAS  Google Scholar 

  47. —. 1935b. The culture and physiology of the marine dinoflagellates. Arch. Mikrobiol.6: 157–181.

    Article  Google Scholar 

  48. Barnes, H. 1949. On the volume measurement of water filtered by a plankton pump, with some observations on the distribution of planktonic animals. Jour. Mar. Biol. Assoc. U.K.28: 651–662.

    Article  Google Scholar 

  49. —. 1955. The analysis of sea water: a review. Analyst80: 573–592.

    Article  CAS  Google Scholar 

  50. — andMarshall, S. M. 1951. On the variability of replicate plankton samples and some applications of “contagious” series to the statistical distribution of catches over restricted periods. Jour. Mar. Biol. Assoc. U.K.30: 233–263.

    Article  Google Scholar 

  51. — andPowell, H. T. 1950. Some observations on the effect of fibrous glass surfaces upon the settlement of certain sedentary marine organisms. Jour. Mar. Biol. Assoc. U.K.29: 299–302.

    Article  Google Scholar 

  52. Baslavskaya, S. S., andRusina, O. N. 1950. [Photosynthesis of phytoplankton in reservoirs in the steppe region]. Comp. Rend. Acad. Sci. [U.R.S.S.]71: 1121–1124. [In Russian.]

    CAS  Google Scholar 

  53. Beadle, L. C. 1932. Scientific results of the Cambridge Expedition to the East African Lakes, 1930–1931. 4. The waters of some East African Lakes in relation to their fauna and flora. Jour. Linn. Soc. (Zool.)38: 157–211.

    Article  Google Scholar 

  54. Beauchamp, R. S. A. 1953a. Hydrological data from Lake Nyasa. Jour. Ecol.41: 226–239.

    Article  Google Scholar 

  55. —. 1953b. Sulphates in African inland waters. Nature [London]171: 769–771.

    Article  CAS  Google Scholar 

  56. Belcher, R., andIngram, G. 1950. A rapid microcombustion method for the determination of carbon and hydrogen. Analyt. Chim. Acta4: 118–129.

    Article  CAS  Google Scholar 

  57. Beling, A., andJannasch, H. W. 1955. Hydrobakteriologische Untersuchungen der Fulda unter Anwendung der Membranfiltermethode. Hydrobiologia7: 36–51.

    Article  Google Scholar 

  58. Berardi, G. 1953. Apparecchio per una precisa valutazione volume-trica di campioni di plancton. Mem. Ist Ital. Idrobiol. Marchi7: 221–228.

    Google Scholar 

  59. — andTonolli, V. 1953. Clorofilla, fitoplancton e vicende meteorologiche (Lago Maggiore). Mem. Ist Ital. Idrobiol. Marchi7: 165–187.

    Google Scholar 

  60. Bere, R. 1933. Numbers of bacteria in inland lakes of Wisconsin as shown by the direct microscopic method. Int. Rev. Hydrobiol.29: 248–263.

    Google Scholar 

  61. Berg, K. 1938. Studies on the bottom animals of Esrom Lake. König. Danske Vid. Selsk.8 (6): 1–255.

    Google Scholar 

  62. Birge, E. A. 1922. A second report on limnological apparatus. Trans. Wis. Acad. Sci., Art. & Lett.20: 533–551.

    Google Scholar 

  63. — andJuday, C. 1922. The Inland Lakes of Wisconsin. The Plankton. I. Its quantity and chemical composition. Bull. Wis. Geol. Nat. Hist Surv.64 (Sci. Ser.): 13. 222 pp.

    Google Scholar 

  64. ——. 1930. A second report on solar radiation and inland lakes. Trans. Wis. Acad. Sci., Arts. & Lett.25: 285–335.

    Google Scholar 

  65. ——. 1934. Particulate and dissolved organic matter in inland lakes. Ecol. Monogr.4: 440–474.

    Article  CAS  Google Scholar 

  66. Blackman, G. E., Black, J. N., andMartin, R. P. 1953. Physiological and ecological studies in the analysis of plant environment. VIII. An inexpensive integrating recorder for the measurement of daylight. Ann. Bot. n.s.17: 529–537.

    Google Scholar 

  67. Bliss, C. I., andFisher, R. A. 1953. Fitting the negative binomial distribution to biological data. Biometrics9: 176–200.

    Article  Google Scholar 

  68. Bochkarev, P. F., Votintsev, K. K., andVasnitskii, Y. N. 1950. [The energy of photosynthesis of the macrophyton of Lake Baikal]. Comp. Rend. Acad. Sci. U.R.S.S.70: 519–522. [In Russian.]

    Google Scholar 

  69. Bohlin, K. 1897. Zur Morphologie und Biologie einzelliger Algen. Övers. Danske Vid. Selsk. Förh.9: 507–529.

    Google Scholar 

  70. Bold, H. C. 1942. The cultivation of algae. Bot. Rev.8: 69–138.

    Article  Google Scholar 

  71. Bormann, F. H. 1956. Percentage light readings, their intensity-duration aspects, and their significance in estimating photosynthesis. Ecology37: 473–476.

    Article  Google Scholar 

  72. Bourrelly, P., andDragesco, J. 1955. Contribution à la connaissance d’une algae rarissimePhaeodactylon tricornutum Bohlin. Bull. Microsc. Appl. (2)5: 41–44.

    Google Scholar 

  73. Braarud, T. 1935. Review of Harvey, H. W.: “Measurement of phytoplankton populations”. Jour. Cons. Int. Explor. Mer10: 104–105.

    Google Scholar 

  74. —. 1937. A quantitative method for the experimental study of plankton diatoms. Jour. Cons. Int. Explor. Mer12: 321–332.

    Google Scholar 

  75. -. 1945. Experimental studies on marine plankton diatoms. Avh. Norske Vid. Acad. 1944. 10. 16 pp.

  76. —. 1948. On variations in form ofSceletonema costatum and their bearing on the supply of silica in cultures of diatoms. Nytt. Mag. Nat.86: 31–44.

    Google Scholar 

  77. Bristol Roach, B. M. 1927a. Züchtung von Bodenalgen in Reinkultur.In: Waksman, S. A.: “Methoden der mikrobiologischen Bodenforschung.” Abderhalden Handb. Biol. ArbMeth. Abt. XI, Teil 3, Bd. 1. 815–821.

  78. —. 1927b. On the algae of some normal English soils. Jour. Agric. Sci.17: 565–588.

    Google Scholar 

  79. Brongersma-Sanders, M. 1951. On conditions favouring the preservation of chlorophyll in marine sediments. 3rd World Petrol. Congr. Sect. 1. Preprint 29.

  80. Brook, A. J. 1952. Some observations on the feeding of Protozoa on freshwater algae. Hydrobiologia4: 281–293.

    Article  Google Scholar 

  81. —. 1954. The bottom-living algal flora of slow sand filter beds of waterworks. Hydrobiologia6: 333–351.

    Article  Google Scholar 

  82. —. 1955a. The attached algal flora of slow sand filter beds of waterworks. Hydrobiologia7: 103–117.

    Article  Google Scholar 

  83. —. 1955b. The aquatic fauna as an ecological factor in studies of the periodicity of freshwater algae. Rapp. 8th Int. Bot. Congr. Sect.17: 161.

    Google Scholar 

  84. — andWoodward, W. B. 1956. Some observations on the effects of water inflow and outflow on the plankton of small lakes. Jour. Anim. Ecol.25: 22–35.

    Article  Google Scholar 

  85. Brown, C. J. D., andFlaten, C. M. 1943. A portable field chemistry kit. Limnol. Soc. Amer., Spec. Publ. 11. 4 pp.

  86. Brown, S. R. 1956. A piston sampler for surface sediments of lake deposits. Ecology37: 611–613.

    Article  Google Scholar 

  87. Bruce, J. R., Knight, M., andParke, M. W. 1940. The rearing of oyster larvae on an algal diet. Jour. Mar. Biol. Assoc. U.K.24: 337–374.

    Article  Google Scholar 

  88. Brundin, L. 1951. The relation of O2-microstratification at the mud surface to the ecology of the profundal bottom fauna. Rep. Inst Freshw. Res. Drottning.1950: 32–42.

    Google Scholar 

  89. Brunel, J., Prescott, G. W., andTiffany, L. H. [ed.] 1950. The culturing of algae: a symposium. C. F. Kettering Found. 114 pp.

  90. Burkholder, P. R. 1933. A study of the phytoplankton of Frenchmans Bay and Penobscot Bay, Maine. Int. Rev. Hydrobiol.28: 262–284.

    Article  Google Scholar 

  91. — andBurkholder, L. M. 1956. Vitamin B12 in suspended solids and marsh muds collected along the coast of Georgia. Limnol. Oceanogr.1: 202–208.

    Google Scholar 

  92. Burlew, J. S. [ed.] 1953. Algal culture from laboratory to pilot plant. Publ. Carnegie Inst. Wash. 600. 357 pp.

  93. Burt, W. V. 1955a. Interpretation of spectrophotometer readings on Chesapeake Bay waters. Jour. Mar. Res.14: 33–46.

    Google Scholar 

  94. —. 1955b. Distribution of suspended materials in Chesapeake Bay. Jour. Mar. Res.14: 47–62.

    Google Scholar 

  95. —. 1956. A light-scattering diagram. Jour. Mar. Res.15: 76–80.

    Google Scholar 

  96. Burton, J. D., andRiley, J. P. 1956. Determination of soluble phosphate and total phosphorus in sea-water and of total phosphorus in marine muds. Mikrochim. Acta9: 1350–1365.

    Article  Google Scholar 

  97. Butcher, R. W. 1931. An apparatus for studying the growth of epiphytic algae with special reference to the River Tees. Trans. Nth. Nat. Un.1: 1–15.

    Google Scholar 

  98. —. 1932a. Notes on new and little-known algae from the beds of rivers. New Phytol.31: 289–309.

    Article  Google Scholar 

  99. —. 1932b. Studies in the ecology of rivers. II. The microflora of rivers with special reference to the algae of the river bed. Ann. Bot. [London] n.s.46: 813–861.

    Google Scholar 

  100. —. 1940. Studies on the ecology of rivers. IV. Observations on the growth and distribution of sessile algae in the River Hull, Yorkshire. Jour. Ecol.28: 210–223.

    Article  Google Scholar 

  101. —. 1946. Studies in the ecology of rivers. VI. The algal growth in certain highly calcareous streams. Jour. Ecol.33: 268–283.

    Article  Google Scholar 

  102. -,Pentelow, F. T. K., andWoodley, J. W. A. 1931. An investigation of the River Lark and the effect of beet sugar pollution. Fish. Invest. [London] I.3 (3). 112 pp.

  103. Canter, H. M., andLund, J. W. G. 1948. Studies on plankton parasites. I. Fluctuations in the numbers ofAsterionella formosa Hass. in relation to fungal epidemics. New Phytol.47: 241–261.

    Article  Google Scholar 

  104. — andLund, J. W. G. 1951. Studies on plankton parasites. III. Examples of the interaction between parasitism and other factors determining the growth of diatoms. Ann. Bot. [London] n.s.15: 361–371.

    Google Scholar 

  105. ——. 1953. Studies on plankton parasites. II. The parasitism of diatoms with special reference to lakes in the English Lake District. Trans. Brit. Mycol, Soc.36: 13–37.

    Google Scholar 

  106. Chandler, D. C. 1940. Limnological studies of western Lake Erie. I. Plankton and certain physical chemical data of the Bass Islands region from September 1938 to November 1939. Ohio Jour. Sci.40: 291–336.

    CAS  Google Scholar 

  107. Chow, D. T.-W., andRobinson, R. J. 1953. Forms of silicate available for colorimetric determination. Anal. Chem.25: 646–648.

    Article  CAS  Google Scholar 

  108. Chu, S. P. 1942. The influence of the mineral composition of the medium on the growth of planktonic algae. Part I. Methods and culture media. Jour. Ecol.30: 284–325.

    Article  CAS  Google Scholar 

  109. —. 1943. The influence of the mineral composition of the medium on the growth of planktonic algae. II. The influence of the concentration of inorganic nitrogen and phosphate phosphorus. Jour. Ecol.31: 109–148.

    Article  CAS  Google Scholar 

  110. —. 1946a. Note on the technique of making bacteria-free cultures of marine diatoms. Jour. Mar. Biol. Assoc. U.K.26: 296–302.

    Article  Google Scholar 

  111. —. 1946b. The utilization of organic phosphorus by phytoplankton. Jour. Mar. Biol. Assoc. U.K.26: 285–295.

    Article  CAS  Google Scholar 

  112. Clarke, F. W. 1920. The data of geochemistry. U.S. Geol. Surv., Bull. 695. 832 pp.

  113. Clarke, G. L. 1936. Light penetration into the western North Atlantic and its application to biological problems. Rapp. Cons. Int. Explor. Mer101: pt. 2(3): 3–14.

    Google Scholar 

  114. -. 1939. The utilisation of solar energy by aquatic organisms.In: Poulton [ed.], Problems of Lake Biology. Amer. Assoc. Advanc. Sci., Publ.10: 27–38.

  115. —. 1941. Observations on transparency in the south-western section of the North Atlantic Ocean. Jour. Mar. Res.4: 221–230.

    Google Scholar 

  116. - andBumpus, D. F. 1950. The plankton sampler—an instrument for quantitative plankton investigations. Limnol. Soc. Amer., Spec. Publ.5: 1–8. (2nd Ed.).

  117. —,Edmondson, W. T., andRicker, W. E. 1946. Mathematical formulation of biological productivity. Ecol. Monogr.16: 336–337.

    Article  Google Scholar 

  118. — andJames, H. R. 1939. Laboratory analysis of the selective absorption of light by sea water. Jour. Opt. Soc. Amer.29: 43–55.

    Article  Google Scholar 

  119. — andOster, R. H. 1934. The penetration of the blue and red components of daylight into Atlantic coastal waters and its relation to phytoplankton metabolism. Woods Hole Oceanog. Inst., Biol. Bull.67: 59–76.

    Article  Google Scholar 

  120. — andWertheim, G. K. 1956. Measurements of illumination at great depths and at night in the Atlantic Ocean by means of a new bathyphotometer. Deep-Sea Res.3: 189–205.

    Article  Google Scholar 

  121. Coffin, C. C., Hayes, F. R., Jodrey, L. H., andWhitendy, S. C. 1949. Exchange of materials in a lake as studied by addition of radioactive phosphorus. Canad. Jour. Res. D.27: 207–222.

    CAS  Google Scholar 

  122. Cole, H. A., andKnight-Jones, E. W. 1949. Quantitative estimation of marine nannoplankton. Nature [London]164: 694–695.

    Article  Google Scholar 

  123. Comita, G. W., andEdmondson, W. T. 1953. Some aspects of the limnology of an arctic lake. Stanford Univ., Publ. Biol. Sci.11: 7–13.

    Google Scholar 

  124. Conover, S. A. M. 1954. Observations on the structure of red tides in New Haven Harbor, Connecticut. Jour. Mar. Res.13: 145–155.

    Google Scholar 

  125. —. 1956. Oceanography of Long Island Sound, 1952–1954. IV. Phytoplankton. Bingham Oceanogr. Coll., Bull.15: 62–112.

    Google Scholar 

  126. Cooper, L. H. N. 1952. Factors affecting the distribution of silicate in the north Atlantic Ocean and the formation of north Atlantic deep water. Jour. Mar. Biol. Assoc. U.K.30: 511–526.

    Article  CAS  Google Scholar 

  127. — andMilne, A. 1938. The ecology of the Tamar estuary. II. Under-water illumination. Jour. Mar. Biol. Assoc. U.K.22: 509–527.

    Article  Google Scholar 

  128. Cowey, C. B. 1956. A preliminary investigation of the variation of vitamin B12 in oceanic and coastal waters. Jour. Mar. Biol. Assoc. U.K.35: 609–620.

    Article  CAS  Google Scholar 

  129. Creitz, G. I., andRichards, F. A. 1955. The estimation and characterization of plankton populations by pigment analysis. III. A note on the use of “millipore” membrane filters in the estimation of plankton pigments. Jour, Mar. Res.14: 211–216.

    CAS  Google Scholar 

  130. Curtis, J. T., andJuday, C. 1937. Photosynthesis of algae in Wisconsin lakes. III. Observations of 1935. Int. Rev. Hydrobiol.35: 122–133.

    Article  Google Scholar 

  131. Cushing, D. H. 1952. Review of Wiborg, K. F. (1951): “The Whirling vessel. An apparatus for the fractioning of plankton samples”. Jour. Cons. Int. Explor. Mer18: 76–77.

    Google Scholar 

  132. —. 1953. Studies on plankton populations. Jour. Cons. Int. Explor. Mer19: 3–22.

    Google Scholar 

  133. —. 1955. Production and a pelagic fishery. Fish. Invest. [London] II.18 (7). pp. 104.

    Google Scholar 

  134. Czosnowski, J. 1951–52. [Contribution to the knowledge of the hydrobiology of puddles]. [In Polish; Eng. sum.]. Act. Soc. Bot. Polon.21: 317–327.

    Google Scholar 

  135. Davis, F. J. 1941. Surface loss of solar and sky radiation by inland lakes. Trans. Wis. Acad. Sci., Arts. & Lett.33: 83–93.

    Google Scholar 

  136. De, P. K. 1939. The role of blue-green algae in nitrogen fixation in ricefields. Proc. Roy. Soc. B.127: 121–139.

    Article  CAS  Google Scholar 

  137. Denffer, D. von. 1949. Die planktische Massenkultur pennater Grunddiatomeen. Arch. Mikrobiol.14: 159–202.

    Article  Google Scholar 

  138. Diller, M., andKersten, H. J. 1954. Turbidimetric determination of dry weight of algae. Plant Physiol.29: 492–493.

    Article  PubMed  CAS  Google Scholar 

  139. Douglas, B. Observations on the ecology of attached diatoms in a small stony stream. [In preparation.]

  140. Droop, M. R. 1953. On the ecology of flagellates from some brackish and freshwater rockpools of Finland. Act. Bot. Fenn.51: 3–52.

    Google Scholar 

  141. —. 1954. A note on the isolation of small marine algae and flagellates for pure cultures. Jour. Mar. Biol. Assoc. U.K.33: 511–514.

    Article  Google Scholar 

  142. —. 1955a. A suggested method for the assay of vitamin B12 in sea water. Jour. Mar. Biol. Assoc. U.K.34: 435–440.

    Article  CAS  Google Scholar 

  143. —. 1955b. A pelagic marine diatom requiring cobalamin. Jour. Mar. Biol. Assoc. U.K.34: 229–231.

    Article  CAS  Google Scholar 

  144. —. 1957. Auxotrophy and organic compounds in the nutrition of marine phytoplankton. Jour. Gen. Microbiol.16: 286–293.

    CAS  Google Scholar 

  145. Dussart, B. 1949. Les techniques de prises quantitatives du plancton et le mode de represéntation des résultats. Bull. Franc. Piscic.153: 151–158.

    Article  Google Scholar 

  146. Duxbury, A. C., andYentsch, C. S. 1956. Plankton pigment nomographs. Jour. Mar. Res.15: 92–101.

    CAS  Google Scholar 

  147. Dye, J. F. 1944. The calculation of alkalinities and free carbon dioxide in water by the use of nomograms. Jour. Amer. Wat Wks. Assoc.36: 895–900.

    CAS  Google Scholar 

  148. —. 1952. Calculation of effect of temperature on pH, free carbon dioxide, and the three forms of alkalinity. Jour. Amer. Wat. Wks. Assoc.44: 356–372.

    CAS  Google Scholar 

  149. Edmondson, W. T. 1955a. Factors affecting productivity in fertilized salt water. Pap. Mar. Biol. & Oceanogr., Deep Sea Res., Suppl.3: 451–464.

    Google Scholar 

  150. —. 1955b. The seasonal life history ofDaphnia in an arctic lake. Ecology36: 439–455.

    Article  Google Scholar 

  151. —. 1956a. The relation of photosynthesis by phytoplankton to light in lakes. Ecology37: 161–174.

    Article  Google Scholar 

  152. —. 1956b. Measurements of conductivity of lake waterin situ. Ecology37: 201–204.

    Article  CAS  Google Scholar 

  153. —,Anderson, G. C., andPeterson, D. R. 1956. Artificial eutrophication of Lake Washington. Limnol. Oceanogr.1: 47–53.

    Google Scholar 

  154. — andEdmondson, Y. H. 1947. Measurements of production in fertilized salt-water. Jour. Mar. Res.6: 228–246.

    CAS  Google Scholar 

  155. Edwards, R. S., andRichards, F. A. 1956. A bottom-water sampler. Deep-Sea Res.4: 66–67.

    Google Scholar 

  156. Egusa, S. 1949. [The seasonal variation of size in phytoplankton and reliability of net collection]. Bull. Jap. Soc. Sci. Fish.15: 78–82. [In Japanese]. [Cited from Biol. Abstr.26: 11017. 1952].

    Google Scholar 

  157. Einsele, W., andGrim, J. 1938. Über den Kieselsäuregehalt planktischer Diatomeen und dessen Bedeutung für einige Fragen ihrer Ökologie. Zeits. Bot.32: 545–590.

    CAS  Google Scholar 

  158. Emerson, R. 1935. The effect of intense light upon the assimilatory mechanism of green plants, and its bearing upon the carbon dioxide factor. Cold Spr. Harb. Symp. Quant. Biol.3: 128–137.

    CAS  Google Scholar 

  159. Findenegg, I. 1940. Die Planktonproduktion im oligotrophen und eutrophen See. Int. Rev. Hydrobiol.40: 197–207.

    Article  Google Scholar 

  160. Fish, G. R. 1950. A method for obtaining bacteria-free cultures of a marine flagellate andEnteromorpha intestinalis using penicillin. Acta Hort. Gothoburg.18: 81–89. 1948.

    Google Scholar 

  161. —. 1951. Digestion inTilapia esculenta. Nature [London]167: 900–901.

    Article  CAS  Google Scholar 

  162. —. 1955. The food ofTilapia in East Africa. Uganda Jour.19: 85–89.

    Google Scholar 

  163. —. 1956. Chemical factors limiting growth of phytoplankton in Lake Victoria. E. Afr. Agric. Jour.21: 152–158.

    CAS  Google Scholar 

  164. -. 1957. A seiche movement and its effect on the hydrology of Lake Victoria. Fish. Publ. [London].10: 68 pp.

  165. Fisher, R. A., andYates, F. 1948. Statistical tables for biological; agricultural and medical research. 112 pp.

  166. Fleischer, R. 1952. Strahlungszusammenzählung. Ann. Met. [Hamburg]5: 207–214.

    Google Scholar 

  167. Fleming, R. H. 1939. The control of diatom populations by grazing. Jour. Cons. Int. Explor. Mer14: 210–227.

    Google Scholar 

  168. —. 1940. The composition of plankton and units for reporting populations and production. Proc. VI. Pac. Sci. Congr. 1939. Vol.3: 535–540.

    Google Scholar 

  169. -. 1952. Discussion of von Arx, W. S.: “Measurements of the oceanic circulation in temperate and tropical latitudes”. Symp. Ocean. Instr., Div. Physic. Sci. Nat. Acad. Sci.-Nat. Res. Counc. Bull. 309, p. 29.

  170. Fogg, G. E. 1942. Studies on nitrogen fixation by blue-green algae. I. Nitrogen fixation byAnabaena cylindrica. Lemm. Jour. Exp. Biol.19: 78–87.

    CAS  Google Scholar 

  171. —. 1944. Growth and heterocyst production inAnabaena cylindrica Lemm. New Phytol.43: 164–175.

    Article  Google Scholar 

  172. —. 1948. An apparatus for the culture of algae at constant temperature. Ann. Bot. [London] n.s.12: 455–457.

    Google Scholar 

  173. -. 1953. The metabolism of algae. 149 pp.

  174. —. 1956. The comparative physiology and biochemistry of the blue-green algae. Bact. Rev.20: 148–165.

    PubMed  CAS  Google Scholar 

  175. — andWestlake, D. F. 1955. The importance of extracellular products of algae in freshwater. Verh. Int. Ver. Limnol.12: 219–232.

    Google Scholar 

  176. Forsblad, I. 1955. Eine Mikromethode zur Bestimmung von organisch gebundenem Kohlenstoff in Seewasser. Mikrochim. Acta1: 176–186.

    Article  Google Scholar 

  177. Fox, D. L., Isaacs, J. D., andCorcoran, E. F. 1952. Marine leptopel, its recovery, measurement and distribution. Jour. Mar. Res.11: 29–46.

    Google Scholar 

  178. —,Oppenheimer, C. H., andKitteredge, J. S.. 1953. Microfiltration in oceanographie research. II. Retention of colloidal micelles by adsorptive filters and by filter-feeding invertebrates; proportions of dispersed organic to dispersed inorganic matter and to organic solutes. Jour. Mar. Res.12: 233–243.

    CAS  Google Scholar 

  179. Fox, H. M., andWingfield, C. A. 1938. A portable apparatus for the determination of oxygen dissolved in a small volume of water. Jour. Exp. Biol.15: 437–445.

    CAS  Google Scholar 

  180. Føyn, E. 1955. Continuous oxygen recording in sea water. Fiskeridir. Skr. Havundersøk.11 (3): 8 pp.

    Google Scholar 

  181. Fritsch, F. E. 1929. The encrusting algal communities of certain fast-flowing streams. New Phytol.28: 165–196.

    Article  Google Scholar 

  182. -. 1935 [reprinted 1948]. The structure and reproduction of the algae. Vol. 1.

  183. Gaarder, T., andGran, H. H. 1927. Production of plankton in the Oslo Fjord. Rapp. Cons. Explor. Mer42: 1–48.

    Google Scholar 

  184. Gabrielsen, E. K., andSteemann Nielsen, E. 1938. Kohlensäureassimilation und Lichtqualität bei den marinem Planktondiatomeen. (Vorläufige Mitteilung). Rapp. Cons. Explor. Mer108, pt.2(4): 21.

    Google Scholar 

  185. Gail, F. W. 1922. Photosynthesis in some red and brown algae, as related to depth and light. Publ. Puget Sound Mar. (Biol.) Sta.3: 177–193.

    Google Scholar 

  186. Gall, M. H. W. 1949. Measurements to determine extinction coefficients and temperature gradients in the North Sea and English Channel. Jour. Mar. Biol. Assoc. U.K.28: 757–780.

    Article  Google Scholar 

  187. Gall, D. C., andAtkins, W. R. G. 1931. Apparatus for the photoelectric measurement of submarine illumination assembled for the U.S.A. Research ShipAtlantis. Jour. Mar. Biol. Assoc. U.K.17: 1017–1028.

    Article  Google Scholar 

  188. Gardiner, A. C. 1940. The use of pigment extraction methods in estimating plankton. A critical review of papers by G. A. Riley. [Mss. in library of Freshwater Biological Association].

  189. —. 1943. Measurement of phytoplankton population by the pigment extraction method. Jour. Mar. Biol. Assoc. U.K.25: 739–744.

    Article  Google Scholar 

  190. —. 1947. Review of Riley, G. A. (1939): “Correlations in aquatic ecology”. Jour. Cons. Int. Explor. Mer15: 80–81.

    Google Scholar 

  191. Gauld, D. T. 1949. A fish cultivation experiment in an arm of a sea loch. III. The plankton of Kyle Scotnish. Proc. Roy. Soc. Edinb. B.64: 36–64.

    Google Scholar 

  192. Geiger, R. 1950. The climate near the ground. [Trans. by Stenart, M. N., et al.]. 482 pp.

  193. Geitler, L. 1927. Über Vegetationsfärbungen in Bächen. Biol. Gen.3: 791–814.

    Google Scholar 

  194. —. 1932. Der Formwechsel der pennaten Diatomeen (Kieselalgen). Arch. Protistenk.78: 1–226.

    Google Scholar 

  195. —. 1948. Zur Kenntnis der Rassenbildung und des Kopulationsverhalten der DiatomeeCocconeis placentula und ihres Epiphytismus. Bot. Not.1948: 84–92.

    Google Scholar 

  196. Gerloff, G. C., Fitzgerald, G. P., andSkoog, F. 1950a. The isolation, purification and culture of blue-green algae. Amer. Jour. Bot.37: 216–218.

    Article  CAS  Google Scholar 

  197. ———. 1950b. The mineral nutrition ofCoccochloris peniocystis. Amer. Jour. Bot.37: 835–840.

    Article  CAS  Google Scholar 

  198. ———. 1952. The mineral nutrition ofMicrocystis aeruginosa. Amer. Jour. Bot.39: 26–32.

    Article  CAS  Google Scholar 

  199. — andSkoog, F. 1954. Cell contents of nitrogen and phosphorus as a measure of their availability for growth ofMicrocystis aeruginosa. Ecology35: 348–353.

    Article  CAS  Google Scholar 

  200. Gessner, F. 1937. Phytoplanktonverteilung und Vertikalzirkulation im Bodensee. Ber. Deut. Bot. Ges.55: 172–184.

    Google Scholar 

  201. —. 1940. Die Bedeutung der Wasserbewegung für die Atmung und Assimilation der Meeresalgen. Jahrb. Wiss. Bot.89: 1–12.

    CAS  Google Scholar 

  202. —. 1943. Die assimilatorische Leistung des Phytoplanktons, bezogen auf seinen Chlorophyllgehalt. Zeits. Bot.38: 414–424.

    CAS  Google Scholar 

  203. —. 1944. Der Chlorophyllgehalt der Seen als Ausdruck ihrer Produktivität. Arch. Hydrobiol. (Plankt.)40: 687–732.

    Google Scholar 

  204. —. 1948. The vertical distribution of phytoplankton and the thermocline. Ecology29: 386–389.

    Article  Google Scholar 

  205. —. 1949. Der Chlorophyllgehalt im See und seine photosynthetische Valenz als geophysikalische Problem. Schweiz. Zeits. Hydrol.11: 378–410.

    Article  Google Scholar 

  206. —. 1950. Das Phytoplankton der Seen Oberbayerns in seiner quantitativen Entfaltung. Ber. Bayer. Bot. Ges.28: 1–15.

    Google Scholar 

  207. -. 1955. Hydrobotanik. I. Energiehaushalt. 517 pp.

  208. — andDiehl, A. 1951. Die Wirkung natürlicher Ultraviolettstrahlung auf die Chlorophyllzerstörung von Planktonalgen. Arch. Mikrobiol.15: 439–453.

    Article  Google Scholar 

  209. Gibbons, S. G., andFraser, J. H. 1937. The centrifugal pump and suction hose as a method of collecting plankton samples. Jour. Cons. Int. Explor. Mer12: 155–170.

    Google Scholar 

  210. Gibor, A. 1950a. The culture of brine algae. Woods Hole Oceanogr. Inst., Biol. Bull.111: 223–229.

    Article  Google Scholar 

  211. —. 1956b. Some ecological relationships between phyto- and Zooplankton. Woods Hole Oceanogr. Inst., Biol. Bull.111: 230–234.

    Article  Google Scholar 

  212. Gilbert, J. Y. 1942. The errors of the Sedgewick-Rafter Counting Chamber in the enumeration of phytoplankton. Trans. Amer. Micr. Soc.61: 217–226.

    Article  Google Scholar 

  213. Gillbricht, M. 1951. Untersuchungen zur Produktionsbiologie des Planktons in der Kieler Bucht. Kieler Meeresforsch.8: 173–191.

    Google Scholar 

  214. Gimesi, N. 1924. Eine neue Mikrofiltrationspumpe und ihre Anwendung in der Hydrobiologie und Technik. [Not seen, quoted from Utermöhl, 1936].

  215. Godnev, T. N., Kalishevich, S. V., andZakharich, G. T. 1950. [On the chlorophyll content of fresh-water plankton), [In Russian]. Comp. Rend. Acad. Sci. U.R.S.S.73: 1041–1044.

    CAS  Google Scholar 

  216. Godward, M. B. 1933. Contributions to our knowledge of British algae. III. The genusNaegeliella in Britain. IV. On a form ofPhaeothamnion. Jour. Bot. [London]71: 33–44.

    Google Scholar 

  217. —. 1934. An investigation of the causal distribution of algal epiphytes. Beih. Bot. Zentralbl. A.52: 506–539.

    Google Scholar 

  218. —. 1937. An ecological and taxonomic investigation of the littoral algal flora of Lake Windermere. Jour. Ecol.25: 496–568.

    Article  CAS  Google Scholar 

  219. Goetz, A., andTsuneishi, N. 1951. The application of molecular filter membranes to the bacteriological analysis of water. Jour. Amer. Wat. Wks. Assoc.43: 943–984.

    CAS  Google Scholar 

  220. Gojdics, M. 1953. The genusEuglena. 268 pp.

  221. Goldberg, E. D. 1952. Iron assimilation by marine diatoms. Woods Hole, Oceanogr. Inst., Biol. Bull.102: 243–248.

    Article  CAS  Google Scholar 

  222. —,Baker, M., andFox, D. L. 1952. Microfiltration in oceanographic research. I. Marine sampling with the molecular filter. Jour. Mar. Res.11: 194–204.

    CAS  Google Scholar 

  223. —,Walker, T. J., andWhisenand, A. 1951. Phosphate utilisation by diatoms. Woods Hole, Oceanogr. Inst., Biol. Bull.101: 274–284.

    Article  CAS  Google Scholar 

  224. Goodwin, T. W. 1955. Carotenoids.In: Paech, K., and Tracey, M. V. (ed.). Modern methods of plant analysis. Vol.3: 272–311.

  225. Graham, H. W. 1943. Chlorophyll-content of marine plankton. Jour. Mar. Res.5: 153–160.

    CAS  Google Scholar 

  226. Gran, H. H. 1927. The production of plankton in the coastal waters off Bergen. Rep. Norweg. Fish. Invest.3: 1–74.

    Google Scholar 

  227. —. 1929. Quantitative plankton investigations carried out during the expedition with theMichael Sars, July-September, 1924. Rapp. Cons. Explor. Mer56: 1–50.

    Google Scholar 

  228. —. 1931. On the conditions for the production of plankton in the sea. Rapp. Cons. Explor. Mer75: 37–46.

    Google Scholar 

  229. —. 1932. Phytoplankton. Methods and Problems. Jour. Cons. Int. Explor. Mer7: 343–358.

    Google Scholar 

  230. —. 1933. Studies in the biology and chemistry of the Gulf of Maine. II. Distribution of phytoplankton in August, 1932. Woods Hole, Oceanogr. Inst., Biol. Bull.64: 159–182.

    Article  CAS  Google Scholar 

  231. — andRuud, B. 1926. Untersuchungen über die im Meerwasser gelösten organische Stoffe und ihr Verhältnis zur Planktonproduktion. Avh. Norske Vid. Akad.6: 1–14.

    Google Scholar 

  232. Greenham, D. W. P. 1955. The relation between the chlorophyll content ofChlorella and the rate of photosynthesis at low intensities of illumination. Abstr. Diss. Univ. Camb. 1952–53.

  233. Grim, J. 1939. Beobachtungen am Phytoplankton des Bodensees (Obersee) sowie deren rechnerische Auswertung. Int. Rev. Hydrobiol.39: 193–315.

    Article  CAS  Google Scholar 

  234. —. 1950. Versuche zur Ermittelung der Produktionskoeffizienten einiger Planktophyten in einem flachen See. Biol. Zentralbl.69: 3/4 147–174.

    Google Scholar 

  235. —. 1952. Vermehrungsleistungen planktischer Algenpopulationen in Gleichgewichtsperioden. Arch. Hydrobiol. Suppl.20: 238–260.

    Google Scholar 

  236. Gross, F., andKoczy, F. F. 1946. Photometric measurements of the growth of phytoplankton cultures. Göteborg Vet. Samh. Handl. (B)5: 2. 1–18.

    Google Scholar 

  237. Grote, A. 1953. Beitrag zur statistischer Überprüfung quantitativer Methoden in der Limnologie. Gewässer und Abwässer5: 33–76.

    Google Scholar 

  238. Guseva, K. A. 1956. [Methods of cultural-physiological research for algae]. [In Russian].In: Pavlovskogo, E. N. and Zhadin, V. I. (ed.). [Freshwater life of the U.S.S.R.] Vol.4 (I). chap. 35: 122–159.

  239. Handbook of Chemistry and Physics. 1956. 38th Ed. Hodgman, C. D. [Ed.]. Chemical Rubber Publ. Co. 3206 pp.

  240. Handke, H. 1941. Hydrographische und biochemische Untersuchungen über die Plankton-Produktionskraft des Süssen Sees bei Halle. Bot. Arch.42: 149–200.

    CAS  Google Scholar 

  241. Harvey, H. W. 1934. Measurement of phytoplankton population. Jour. Mar. Biol. Assoc. U.K.19: 761–773.

    Article  Google Scholar 

  242. —. 1935. Note concerning a measuring plankton-net Jour. Cons. Int. Explor. Mer10: 179–184.

    Google Scholar 

  243. —. 1937. The supply of iron to diatoms. Jour. Mar. Biol. Assoc. U.K.22: 205–219.

    Article  CAS  Google Scholar 

  244. —. 1939. Substances controlling the growth of a diatom. Jour. Mar. Biol. Assoc. U.K.23: 499–520.

    Article  CAS  Google Scholar 

  245. —. 1940. Nitrogen and phosphorus required for the growth of phytoplankton. Jour. Mar. Biol. Assoc. U.K.24: 115–123.

    Article  CAS  Google Scholar 

  246. —. 1950. On the production of living matter in the sea off Plymouth. Jour. Mar. Biol. Assoc. U.K.29: 97–137.

    Article  CAS  Google Scholar 

  247. -. 1955. The chemistry and fertility of sea waters. 224 pp.

  248. —,Cooper, L. H. N., Lebour, M. V., andRussell, F. S. 1935. Plankton production and its control. Jour. Mar. Biol. Assoc. U.K.20: 407–441.

    Article  Google Scholar 

  249. Hasle, G. R. 1954. The reliability of single observations in phytoplankton surveys. Nytt. Mag. Bot.2: 14–37.

    Google Scholar 

  250. Hauser, E. A. 1955. Silicic science. 188 pp.

  251. Hayes, F. R., andCoffin, C. C. 1951. Radioactive phosphorus and the exchange of lake nutrients. Endeavour10: 78–81.

    CAS  Google Scholar 

  252. —,McCarter, J. A., Cameron, M. L., andLivingstone, D. A. 1952. On the kinetics of phosphorus exchange in lakes. Jour. Ecol.40: 202–216.

    Article  Google Scholar 

  253. Heinrich, K. 1934. Atmung und Assimilation im freien Wasser. Int. Rev. Hydrobiol.30: 387–410.

    Article  CAS  Google Scholar 

  254. Hendey, N. I. 1946. Diatoms without siliceous frustules. Nature [London]158: 588.

    Article  Google Scholar 

  255. —. 1954. Note on the Plymouth “Nitzschia” culture. Jour. Mar. Biol. Assoc. U.K.33: 335–339.

    Article  Google Scholar 

  256. Hensen, V. 1887. Über die Bestimmung des Planktons oder des im Meere treibenden Materials an Pflanzen und Thieren. Ber. Komm. Wiss. Unters. Deut. Meere, Kiel. 12–14, 1882–1886, 1–107.

  257. Hentschel, E. 1916. Biologische Untersuchungen über den tierischen und pflanzlichen Bewuchs im Hamburger Hafen. Mitt. Zool. Mus. Hamburg.33 (2 Beih.): 1–172.

    Google Scholar 

  258. —. 1938. Über quantitative Seihmethoden in der Plankton-forschung. Jour. Cons. Int. Explor. Mer13: 304–308.

    Google Scholar 

  259. Heron, J., andMackereth, F. J. H. 1955. The estimation of calcium and magnesium in natural waters, with particular reference to those of low alkalinity. Mitt. Int. Verh. Limnol.5: 1–7.

    Google Scholar 

  260. Hervey, R. J. 1949. Effect of chromium on the growth of unicellular Chlorophyceae and diatoms. Bot. Gaz.111: 3–11.

    Article  Google Scholar 

  261. Hill, R., andWhittingham, C. P. 1955. Photosynthesis. 165 pp.

  262. Hinshelwood, C. N. 1946. The chemical kinetics of the bacterial cell. 284 pp.

  263. Hogetsu, K. 1939. Untersuchungen über die Lage des Kompensa-tionspunktes der Wasserpflanzen im Kizakisee. Bot. Mag. [Tokyo]53: 428–442.

    Google Scholar 

  264. — andIchimura, S. 1953. Studies on the biological production of Lake Suwa. VI. The ecological studies on the production of phytoplankton. Jap. Jour. Bot.14: 280–303.

    Google Scholar 

  265. Höglund, H., andLandberg, S. 1936. Further investigations upon the photosynthesis of phyto-plankton by constant illumination. Rapp. Cons. Explor. Mer93: 32–33.

    Google Scholar 

  266. Holmes, R. W., andWidrig, T. M. 1956. The enumeration and collection of marine phytoplankton. Jour. Cons. Int. Explor. Mer22: 21–32.

    Google Scholar 

  267. Holsinger, E. C. T. 1955. The distribution and periodicity of the phytoplankton of three Ceylon lakes. Hydrobiologia7: 25–35.

    Google Scholar 

  268. Huber-Pestalozzi, G. 1938–55. Das Phytoplankton des Süsswassers. Binnengewässer16: T.1, 2/1, 2/2, 324.

    Google Scholar 

  269. Hurter, E. 1928. Beobachtungen an Litoralalgen des Vierwaldstättersees. Mitt. Naturf. Ges. Luzern10: 3–254.

    Google Scholar 

  270. Hutchinson, G. E. 1938. On the relation between the oxygen deficit and the productivity and typology of lakes. Int. Rev. Hydrobiol.36: 336–355.

    Article  CAS  Google Scholar 

  271. —. 1941. Limnological studies in Connecticut. IV. The mechanism of intermediary metabolism in stratified lakes. Ecol. Monogr.11: 21–60.

    Article  CAS  Google Scholar 

  272. —. 1943. Thiamin in lake waters and aquatic organisms. Arch. Biochem.2: 143–150.

    CAS  Google Scholar 

  273. — andBowen, V. T. 1947. A direct demonstration of the phosphorus cycle in a small lake. Proc. Nat. Acad. Sci. [Wash.]33: 148–153.

    Article  CAS  Google Scholar 

  274. —,Deevey, E. S., andWollack, A. 1939. The oxidation reduction potentials of lake waters and their ecological significance. Proc. Nat. Acad. Sci. [Wash.]25: 87–90.

    Article  CAS  Google Scholar 

  275. — andSetlow, J. K. 1946. Limnological studies in Connecticut. VIII. The niacin cycle in a small inland lake. Ecology27: 13–22.

    Article  CAS  Google Scholar 

  276. Hutner, S. H. 1948. Essentiality of constituents of sea-water for the growth of a marine diatom. Trans. N. Y. Acad. Sci. II.10: 136–141.

    Google Scholar 

  277. - andProvasoli, L. 1951. The phytoflagellates.In: Lwoff, A. (ed.). Biochemistry and physiology of Protozoa. Vol.1: 27–128.

  278. - and -. 1955. Comparative biochemistry of flagellates.In: Hutner, S. H., and Lwoff, A. (ed.). Biochemistry and physiology of Protozoa. Vol.2: 17–43.

  279. —— andFilfus, J. 1953. Nutrition of some phagotrophic fresh-water chrysomonads. Ann. N. Y. Acad. Sci.56: 852–862.

    Article  PubMed  CAS  Google Scholar 

  280. Ingram, G. 1951. Rapid micro combustion methods for the determination of elements in organic compounds. Mikrochemie36: 690–705.

    Article  Google Scholar 

  281. —. 1953. Some further absorption properties of manganese dioxide. Mikrochemie. Acta1-2: 71–78.

    Article  Google Scholar 

  282. Ingram, W. M., andPalmer, C. M. 1952. Simplified methods for collecting, examining and recording plankton in water. Jour. Amer. Wat. Wks. Assoc.44: 617–624.

    Google Scholar 

  283. International Critical Tables of Numerical Data, Physics, Chemistry and Technology (1926–1933). 8 vols. Ed. Washburn, E. W., et al.

  284. Jaag, O., Ambühl, H., andZimmermann, P. 1956. Über die Entnahme von Wasserproben in fliessenden Gewässern. Schweiz. Zeits. Hydrol.18: 156–160.

    Article  Google Scholar 

  285. Jackson, D. F., andMcFadden, J. 1954. Phytoplankton photosynthesis in Sanctuary Lake, Pymatuning Reservoir. Ecology35: 1–4.

    Article  CAS  Google Scholar 

  286. Jacobsen, J. P., Robinson, R. J., andThompson, T. G. 1950. A review of the determination of dissolved oxygen in sea water by the Winkler method. Assoc. Océanogr. Phys. Un. Géod. Int., Publ. Sci. 11, 22 pp. Bergen.

  287. James, H. R., andBirge, E. A. 1938. A laboratory study of the absorption of light by lake waters. Trans. Wis. Acad. Sci., Arts. & Lett.31: 1–154.

    CAS  Google Scholar 

  288. Jannasch, H. W. 1953. Weitere Mitteilung zur quantitativen Phytoplankton-Untersuchung mit Membranfiltern. Ber. Limnol. Flusssta. Freudenthal5: 59–62.

    Google Scholar 

  289. Järnefelt, H. 1955. Über die Sedimentation des Sestons. Verh. Int. Ver. Limnol.12: 144–158.

    Google Scholar 

  290. Jenkin, P. M. 1930. A preliminary limnological survey of Loch Awe (Argyllshire). Pt. I. An investigation of some physical and chemical conditions in the Loch and experiments on photosynthesis at various depths. Int. Rev. Hydrobiol.24: 24–46.

    Article  CAS  Google Scholar 

  291. —. 1937. Oxygen production by the diatomCoscinodiscus excentricus Ehr. in relation to submarine illumination in the English Channel. Jour. Mar. Biol. Assoc. U.K.22: 301–343.

    Article  CAS  Google Scholar 

  292. Jenkin, B. M., andMortimer, C. H. 1938. Sampling lake deposits. Nature [London]142: 834–835.

    Article  Google Scholar 

  293. —— andPennington, W. 1941. The study of lake deposits. Nature [London]147: 496–500.

    Article  Google Scholar 

  294. Jenkins, P. G. 1955. Seasonal changes in the phytoplankton as indicated by spectrophotometric chlorophyll estimations 1952–53. Pap. Mar. Biol. Oceanogr., Deep-Sea Res.3 (Suppl.): 58–67.

    Google Scholar 

  295. Jenny, H. 1941. Factors of soil formation. A system of quantitative pedology. 281 pp.

  296. Jensen, E. A., andNielsen, E. S. 1953. A water-sampler for biological purposes. Jour. Cons. Int. Explor. Mer18: 296–299.

    Google Scholar 

  297. Jerlov, N. G. 1951. Optical studies of ocean waters. Rep. Swedish Deep-Sea Expd. Vol.3: 1–59.

    Google Scholar 

  298. —. 1953. Particle distribution in the ocean. Rep. Swedish Deep-Sea Expd. Vol.3: 73–97.

    Google Scholar 

  299. —. 1954. Colour filters to simulate the extinction of daylight in the sea. Jour. Cons. Int. Explor. Mer20: 156–159.

    Google Scholar 

  300. —. 1955. The particulate matter in the sea as determined by means of the Tyndall meter. Tellus7: 218–225.

    Google Scholar 

  301. Johnson (Jerlov), N. G., andKullenberg, B. 1946. On radiant energy measurements in the sea. Svenska Hydrogr.-Biol. Komm. Skr. (3)1: (1).

  302. - andOlsson, H. 1944. (a) On the standardisation of photo-electric elements by means of solar radiation. (b) The total energy of incident radiation computed from records with photoelectric elements. Medd. Met.-Hydr. Anst. Uppsala, No. 47. 24 pp.

  303. Johnston, W. H., andButler, E. B. 1954. Retention of chromium by glass following treatment with cleaning solution. Science120: 543–544.

    Article  PubMed  Google Scholar 

  304. Jönsson, B. 1903. Assimilationsversuche bei verschiedener Meerestiefen. Nyt. Mag. Nat.41: 1–22.

    Google Scholar 

  305. Jørgensen, C. B. 1955. Quantitative aspects of filter feeding in invertebrates. Biol. Rev.30: 391–454.

    Article  Google Scholar 

  306. Jørgensen, E. G. 1952. Effects of different silicon concentrations on the growth of diatoms. Physiol. Plant.5: 161–170.

    Article  Google Scholar 

  307. —. 1953. Silicate assimilation by diatoms. Physiol. Plant.6: 301–315.

    Article  Google Scholar 

  308. —. 1955a. Variations in the silica content of diatoms. Physiol. Plant.8: 840–845.

    Article  Google Scholar 

  309. —. 1955b. Solubility of the silica in diatoms. Physiol. Plant.8: 846–851.

    Article  Google Scholar 

  310. —. 1956. Growth-inhibiting substances formed by algae. Physiol. Plant.9: 712–726.

    Article  Google Scholar 

  311. Joseph, J. 1949a. Durchsichtigkeitsmessungen im Meere im ultravioletten Spektralbereich. Deut. Hydrogr. Zeits.2: 212–218.

    Article  Google Scholar 

  312. —. 1949b. Über die Messung des “Vertikalen Extinktionskoeffizienten”. Deut. Hydrogr. Zeits.2: 255–267.

    Article  Google Scholar 

  313. —. 1950. Quantitative Durchsichtigkeitsmessungen im Meere. Deut. Hydrogr. Zeits.3: 214–219.

    Article  Google Scholar 

  314. Juday, C. 1897. The plankton of Turkey lake. Proc. Ind. Acad. Sci.1896: 287–296.

    Google Scholar 

  315. —. 1926. A third report on limnological apparatus. Trans. Wis. Acad. Sci., Art & Lett.22: 299–314.

    Google Scholar 

  316. —. 1940. The annual energy budget of an inland lake. Ecology21: 438–450.

    Article  Google Scholar 

  317. —,Blair, J. M., andWilda, E. F. 1943. The photosynthetic activities of the aquatic plants of Little John Lake, Vilas County, Wisconsin. Amer. Midl. Nat.30: 426–446.

    Article  Google Scholar 

  318. — andSchomer, H. A. 1935. The utilisation of solar radiation by algae at different depths in lakes. Woods Hole, Oceanogr. Inst., Biol. Bull.69: 75–81.

    Article  Google Scholar 

  319. Kalle, K. 1950. Der Mechanismus des ozeanischen und des kontinentalen Produktionsvorganges. Deut. Hydrogr. Zeits.3: 62–69.

    Article  Google Scholar 

  320. —. 1951. Meereskundlich-chemische Untersuchungen mit Hilfe des Pulfrich-Photometers von Zeiss. VII Mitteilung. Die Mikrobestimmung des Chlorophylls und der Eigenfluoreszenz des Meerwassers. Deut. Hydrogr. Zeits.4: 92–96.

    Article  CAS  Google Scholar 

  321. Kamiya, S. 1936. The visible distance of objects immersed in sea water. Bull. Jap. Soc. Sci. Fish.4: 365–373.

    Google Scholar 

  322. Kampa, E. M. 1955. A discrepancy between calculation and measurement of submarine illumination. Proc. Nat. Acad. Sci.41: 938–939.

    Article  PubMed  CAS  Google Scholar 

  323. Kay, H. 1954. Eine Mikromethode zur chemischen Bestimmung des organisch gebundenen Kohlenstoffs im Meerwasser. Kieler Meeresforsch.10: 25–36.

    Google Scholar 

  324. Ketchum, B. H. 1951. Plankton algae and their biological significance.In: Smith, G. M. Manual of phycology. 335–346.

  325. —. 1954a. Relation between circulation and planktonic populations in estuaries. Ecology35: 191–200.

    Article  Google Scholar 

  326. —. 1954b. Mineral nutrition of phytoplankton. Ann. Rev. Plant Physiol.5: 55–74.

    Article  CAS  Google Scholar 

  327. — andRedfield, A. C. 1938. A method for maintaining a continuous supply of marine diatoms by culture. Woods Hole, Oceanogr. Inst., Biol. Bull.75: 165–169.

    Article  Google Scholar 

  328. ——. 1949. Some physical and chemical characteristics of algal growth in mass culture. Jour. Cell. & Comp. Physiol.33: 281–299.

    Article  CAS  Google Scholar 

  329. Kikuchi, K. 1935. Relation between the under-water illumination and the transparency of the water of lakes. Jap. Jour. Limnol.5: 121–124.

    Google Scholar 

  330. Kingsbury, J. M. 1956. On pigment changes and growth in the bluegreen alga,Plectonema nostocorum Bornet ex Gomont. Woods Hole, Oceanogr. Inst., Biol. Bull.110: 310–319.

    Article  CAS  Google Scholar 

  331. Kleerekopee, H. 1952. A new apparatus for the study of sedimentation in lakes. Canad. Jour. Zool.30: 185–190.

    Article  Google Scholar 

  332. Knight-Jones, E. W. 1951. Preliminary studies of nanoplankton and ultraplankton systematics and abundance by a quantitative culture method. Jour. Cons. Int. Explor. Mer17: 140–155.

    Google Scholar 

  333. Knudson, B. M. 1957. Ecology of the epiphytic diatomTabellaria flocculosa (Roth) Kütz. var.flocculosa in three English lakes. Jour. Ecol.45(1): 93–112.

    Article  Google Scholar 

  334. Kny, L. 1884. Das Wachstum des Thallus vonColeochaete scutata in seiner Beziehungen zur Schwerkraft und zum Licht. Ber. Deut. Bot. Ges.2: 93–96.

    Google Scholar 

  335. Kofoid, C. A. 1897. On some important sources of error in the plankton method. Science6: 829–832.

    Article  PubMed  Google Scholar 

  336. —. 1903. The plankton of the Illinois River, 1894–1899, with introductory notes upon the hydrography of the Illinois River and its basin. Pt. 1. Quantitative investigations and general results. Bull. I11. Lab. Nat. Hist.6: 95–629.

    Google Scholar 

  337. —. 1911a. On a self-closing plankton net for horizontal towing. Univ. Calif., Publ. Zool.8: 311–348.

    Google Scholar 

  338. —. 1911b. On an improved form of self-closing waterbucket for plankton investigations. Univ. Calif., Publ. Zool.8: 349–352.

    Google Scholar 

  339. Kolkwitz, R. 1911a. Über das Kammerplankton des Süsswassers und der Meere. Ber. Deut. Bot. Ges.29: 386–402.

    Google Scholar 

  340. —. 1911b. Das Planktonsieb aus Metall und seine Anwendung. Ber. Deut. Bot. Ges.29: 511–517.

    Google Scholar 

  341. —. 1924. Plankton-Membranfilter. Ber. Deut. Bot. Ges.42: 209. [See also Abderhalden, Abt. 9, Teil 8].

    Google Scholar 

  342. Kostytschew, S., andSoldatenkow, S. 1926. Der tägliche Verlauf und die spezifische Identität der Wasserpflanzen. Planta2: 1–9.

    Article  CAS  Google Scholar 

  343. Kott, P. 1953. Modified whirling apparatus for the sub-sampling of plankton. Austral. Jour. Mar. Freshw. Res.4: 387–393.

    Article  Google Scholar 

  344. Kozminski, Z. 1938a. Amount and distribution of the chlorophyll in some lakes of north-eastern Wisconsin. Trans. Wis. Acad. Sci., Arts & Lett.31: 411–438.

    CAS  Google Scholar 

  345. —. 1938b. Über die Chlorophyllverteilung in einigen Seen von Nordost-Wisconsin (U.S.A.). [In Polish; German summary]. Arch. Hydrob. Rybact.11: 120–163.

    Google Scholar 

  346. Krauss, R. W., andThomas, W. H. 1954. The growth and inorganic nutrition ofScenedesmus obliquus in mass culture. Plant Physiol.29: 205–214.

    Article  PubMed  CAS  Google Scholar 

  347. —. 1955. Nutrient supply for large-scale algal culture. Sci. Mon.80: 21–28.

    Google Scholar 

  348. Krebs, R. P., Perkins, P., Tytell, A. A., andKersten, H. 1942. A turbidity comparator. Rev. Sci. Instrum.13: 229–232.

    Article  CAS  Google Scholar 

  349. Kreps, E., andVerjbinskaya, N. 1930. Seasonal changes in the phosphate and nitrate content and in hydrogen ion concentration in the Barents Sea. Jour. Cons. Int. Explor. Mer5: 329–346.

    Google Scholar 

  350. Krey, J. 1939. Die Bestimmung des Chlorophylls in Meerwasser-Schöpfproben. Jour. Cons. Int. Explor. Mer14: 201–209.

    CAS  Google Scholar 

  351. —. 1950. Eine neue Methode zur quantitativen Bestimmung des Planktons. Kieler Meeresforsch.7: 58–75.

    Google Scholar 

  352. —. 1951. Quantitative Bestimmung von Eiweiss im Plankton mittels der Biuretreaktion. Kieler Meeresforsch.8: 16–29.

    CAS  Google Scholar 

  353. —. 1952a. Die Untersuchung des Eiweissgehaltes in kleinen Planktonproben. Kieler Meeresforsch.8: 164–172.

    Google Scholar 

  354. —. 1952b. Die Biomasse des marinen Planktons. Kieler Meeresforsch.9: 43–50.

    Google Scholar 

  355. —. 1953. Plankton- und Sestonuntersuchungen in der südwestlichen Nordsee auf der Fahrt der “Gauss” Februar/März 1952. Ber. Deut. Komm. Meeresforsch.13: 136–153.

    Google Scholar 

  356. Krizenecky, J. 1942. Untersuchungen zur Frage einer quantitativen Bestimmung des Teichplanktons mittels Zentrifugieren. Arch. Hydrobiol. (Plankt.)40: 98–113.

    Google Scholar 

  357. Kroch, A. 1930. Eine Mikromethode für die organische Verbrennungsanalyse, besonders von gelösten Substanzen. Biochetn. Zeits.221: 247–263.

    Google Scholar 

  358. — andKeys, A. 1934. Methods for the determination of dissolved organic carbon and nitrogen in sea water. Woods Hole, Oceanogr. Inst., Biol. Bull.67: 132–144.

    Article  Google Scholar 

  359. —,Lance, E., andSmith, W. 1930. On the organic matter given off by algae. Biochem. Jour.24: 1666–1671.

    Google Scholar 

  360. Kufferath, H. 1929. La culture des algues. Rev. Algol.4: 127–346.

    Google Scholar 

  361. Kullenberg, B. 1947. The piston core sampler. Svenska Hydrogr.-biol. Komm. Skr. (3).1 (2). 1–46.

    Google Scholar 

  362. —. 1955. A new core-sampler. Goteborgs VetenskSamh. Handl., Sjatte Folj. B.6 (15): 1–17.

    Google Scholar 

  363. Kurasige, H. 1932. Some experimental observations on the diurnal change of pH and oxygen production by aquatic plants in relation to the solar radiation. Geophys. Mag. [Tokyo]6: 343–359.

    Google Scholar 

  364. Kuznetsov, S. I. 1956. Application of radioactive isotopes to the study of processes of photosynthesis and chemosynthesis in lakes. Proc. Int. Conf. Peaceful Use of Atomic Energy: 368–376. United Nations.

  365. — andKarsinkin, G. S. 1931. Direct method for the quantitative study of bacteria in water and some considerations on the causes which produce a zone of oxygen minimum in Lake Glubokoje. Zentralbl. Bakt. II.83: 169–174.

    Google Scholar 

  366. Lackey, J. B. 1938. The manipulation and counting of river plankton and changes in some organisms due to formalin preservation. U. S. Pub. Health Rep.53 (2), No. 47: 2080–2093.

    CAS  Google Scholar 

  367. Langford, R. R. 1953. Methods of plankton collection and a description of a new sampler. Jour. Fish. Res. Bd. Canada10: 238–252.

    Google Scholar 

  368. Lanskaya, L. A., andSivkov, S. I. 1949. [The utilisation of solar radiation during photosynthesis of marine diatoms]. Comp. Rend. Acad. Sci. U.R.S.S.67: 1147–1150. [In Russian].

    CAS  Google Scholar 

  369. Lastochkin, D. 1945. Achievements in Soviet hydrobiology of continental waters. Ecology26: 320–331.

    Article  Google Scholar 

  370. Lauff, G. H. 1953. The design and application of a multiple sample plankton trap. Ph.D. thesis. Cornell Univ.

  371. Lauscher, F., Friedl, E., andNiederdorfer, E. 1934. Beobachtungen über das Eindringen des Lichtes in einen See. Beitr. Geophys.42: 423–429.

    Google Scholar 

  372. Le Grand, Y. 1939. La pénétration de la lumière dans la mer. Ann. Inst. Ocean. Monaco19: 393–436.

    Google Scholar 

  373. Lenoble, J. 1954. Contribution à l’étude du rayonnement ultraviolet solaire, de sa diffusion dans l’atmosphere et de sa pénétration dans la mer. Ann. Géophys.10: 117–147, 187–209, 210–225.

    Google Scholar 

  374. Levring, T. 1947. Submarine daylight and the photosynthesis of marine algae. Goteborgs VetenskSamh. Handl., Sjatte Folj. B.5(6): 1–90.

    Google Scholar 

  375. — andFish, G. R. 1956. The penetration of light in some tropical East African waters. Oikos7: 98–109.

    Article  Google Scholar 

  376. Lewin, J. C. 1954. Silicon metabolism in diatoms. I. Evidence for the role of reduced sulfur compounds in silicon utilization. Jour. Gen. Physiol.37: 589–599.

    Article  CAS  Google Scholar 

  377. —. 1955a. Silica metabolism in diatoms. II. Sources of silicon for growth ofNavicula pelliculosa Plant Physiol.30: 129–134.

    Article  PubMed  CAS  Google Scholar 

  378. —. 1955b. Silicon metabolism in diatoms. III. Respiration and silicon uptake inNavicula pelliculosa. Jour. Gen. Physiol.39: 1–10.

    Article  CAS  Google Scholar 

  379. Lewin, R. A. 1954. A marineStichococcus sp. which requires vitamin B12 (cobalamin). Jour. Gen. Microbiol.10: 93–96

    CAS  Google Scholar 

  380. Liepolt, R. 1955. Ein fahrbares Laboratorium zur modernen Gewässerforschung. Verh. Int. Ver. Limnol.12: 394–403.

    Google Scholar 

  381. Lindeman, R. L. 1942. The trophic-dynamic aspect of ecology. Ecology23: 399–418.

    Article  Google Scholar 

  382. Littleford, R. A., Newcombe, C. L., andShepherd, B. B. 1940. An experimental study of certain quantitative plankton methods. Ecology21: 309–322.

    Article  Google Scholar 

  383. Livingstone, D. A. 1955. A lightweight piston sampler for lake deposits. Ecology36: 137–139.

    Article  Google Scholar 

  384. Locker, F. 1950. Beiträge zur Kenntnis des Formwechsels der Diatomeen an Hand von Kulturversuchungen. Öster. Bot. Zeits.97: 322–332.

    Google Scholar 

  385. Lohmann, H. 1908. Untersuchungen zur Festellung des vollständigen Gehaltes des Meeres an Plankton. Wiss. Meeresuntersuch.10: 129–370.

    Google Scholar 

  386. —. 1911. Über das Nannoplankton und die Zentrifugierung kleinster Wasserproben zur Gewinnung desselben in lebendem Zustande. Int. Rev. Hydrobiol.4: 1–38.

    Article  Google Scholar 

  387. Lönnerbald, G. 1929. Biologische Untersuchungen in einigen Seen im Aneboda-Gebiet. Bot. Not.1929: 405–426.

    Google Scholar 

  388. Loose, L., Pearsall, W. H., andWillis, F. M. 1934. Carbon assimilation byChlorella in Windermere. Proc. Leeds Phil. & Lit. Soc.2: 519–524.

    CAS  Google Scholar 

  389. Lund, J. W. G. 1942. The marginal algae of certain ponds, with special reference to the bottom deposits. Jour. Ecol.30: 245–283.

    Article  Google Scholar 

  390. —. 1945. Observations on soil algae. I. The ecology, size and taxonomy of British soil diatoms. New Phytol.44: 196–219.

    Article  Google Scholar 

  391. —. 1949. Studies onAsterionella formosa Hass. I. The origin and nature of the cells producing seasonal maxima. Jour. Ecol.37: 389–419.

    Article  Google Scholar 

  392. —. 1950. Studies onAsterionella formosa Hass. II. Nutrient depletion and the spring maximum. Jour. Ecol.38: 1–35.

    Article  Google Scholar 

  393. —. 1951. A sedimentation technique for counting algae and other organisms. Hydrobiologia3: 390–394.

    Article  Google Scholar 

  394. —. 1954a. The seasonal cycle of the plankton diatomMelosira italica subsp.subarctica O. Müll. Jour. Ecol.42: 151–179.

    Article  Google Scholar 

  395. —. 1954b. The importance of algae to waterworks engineers. Jour. Instn. Wat. Engrs.8: 497–504.

    CAS  Google Scholar 

  396. —. 1955a. The ecology of algae and waterworks practice. Proc. Soc. Wat. Trtmnt. Exmn.4: 83–109.

    Google Scholar 

  397. —. 1955b. Further observations on the seasonal cycle ofMelosira italica (Ehr.) Kütz. subsp.subarctica O. Müll. Jour. Ecol.43: 91–102.

    Article  Google Scholar 

  398. -,Kipling, C., andLe Cren, E. D. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia (in the press).

  399. Lunelund, H. 1934. Contribution to the knowledge of solar radiation in Finland. Comment. Phys.-Math., Helsingfors7(11): 1–58.

    Google Scholar 

  400. Macan, T. T., andWorthington, E. B. 1951. Life in lakes and rivers. 272 pp. New Naturalist No. 15.

  401. McArthur, J. N. 1934. A new type of portable microscope. Jour. Roy. Micr. Soc. III.54: 182–185.

    Google Scholar 

  402. —. 1947a. Advances in the design of the inverted prismatic microscope. Jour. Roy. Micr. Soc. III.65: 8–16.

    Google Scholar 

  403. —. 1947b. A new type of research microscope. Trans. Roy. Soc. Trop. Med. & Hyg.40: 378.

    CAS  Google Scholar 

  404. McCombie, A. M. 1953. Factors influencing the growth of phytoplankton. Jour. Fish. Res. Bd. Canada10: 253–282.

    Google Scholar 

  405. Macdonald, J. D. 1869. On the structure of the diatomaceous frustule and its genetic cycle. Ann. Mag. Nat. Hist. IV.3: 1–8.

    Google Scholar 

  406. Mackereth, F. J. H. 1953. Phosphorus utilization byAsterionella formosa Hass. Jour. Exp. Bot.4: 296–313.

    Article  CAS  Google Scholar 

  407. -. 1955a. Ion-exchange procedures for the estimation of (I) Total ionic concentration, (II) Chlorides and (III) Sulphates in natural waters. Mitt. Int. Verh. Limnol. No. 4. 16 pp.

  408. —. 1955b. Rapid micro-estimation of the major anions of fresh water. (With an appendix by Moore, W. H.). Proc. Soc. Wat. Trtmnt. Exmn.4: 27–42.

    Google Scholar 

  409. McMillan, G. L., andVerduin, J. 1953. Photosynthesis of natural communities dominated byCladophora glomerata andUlothrix sonata. Ohio. Jour. Sci.53: 373–377.

    CAS  Google Scholar 

  410. McQuate, A. G. 1956. Photosynthesis and respiration of the phytoplankton in Sandusky Bay. Ecology37: 834–839.

    Article  CAS  Google Scholar 

  411. Madhok, M. R., andFazal-ud-din. 1947. A simple method of isolating bacteria free cultures of Protozoa. Soil Sci.64: 85–96.

    Article  Google Scholar 

  412. Major, J. 1951. A functional, factorial approach to plant ecology. Ecology32: 392–412.

    Article  Google Scholar 

  413. Manning, W. M. 1940. A method for obtaining continuous records of dissolved oxygen in lake waters. Ecology21: 509–512.

    Article  CAS  Google Scholar 

  414. — andJuday, R. E. 1941. The chlorophyll content and productivity of some lakes in north-eastern Wisconsin. Trans. Wis. Acad. Sci., Arts. & Lett.33: 363–393.

    CAS  Google Scholar 

  415. —,Juday, C., andWolf, M. 1938a. Photosynthesis of aquatic plants at different depths in Trout Lake, Wisconsin. Trans. Wis. Acad. Sci., Arts. & Lett.31: 377–410.

    CAS  Google Scholar 

  416. ———. 1938b. Photosynthesis inChlorella. Quantum efficiency and rate measurements in sunlight. Jour. Amer. Chem. Soc.60: 274–278.

    Article  CAS  Google Scholar 

  417. Margalef, R. 1948. A new limnological method for the investigation of thin-layered epilithic communities. Trans. Amer. Micr. Soc.67: 153–154.

    Article  Google Scholar 

  418. —. 1949. Une nouvelle méthode limnologique pour l’étude du périphyton. Verh. Int. Ver. Limnol.10: 284–285.

    Google Scholar 

  419. —. 1954a. Un aparato para el cultivo de algas en condiciones regulables. Publ. Inst. Biol. Apl. Barcelona17: 65–69.

    Google Scholar 

  420. —. 1954b. Una técnica de filtración para el estudio cualitativo y cuantitativo del fitoplancton. Publ. Inst. Biol. Apl. Barcelona17: 131–134.

    Google Scholar 

  421. —. 1954c. Consideraciones sobre la determinación cuantitativa del fitoplancton por la valoración de pigmentes solubles y los factores que afectan a la relación entre cantidad de pigmento y peso seco. Publ. Inst. Biol. Apl. Barcelona16: 71–84.

    CAS  Google Scholar 

  422. Marshall, S. M., andOrr, A. P. 1927. The relation of the plankton to some chemical and physical factors in the Clyde sea area. Jour. Mar. Biol. Assoc. U.K.14: 837–868.

    Article  CAS  Google Scholar 

  423. ——. 1928. The photosynthesis of diatom cultures in the sea. Jour. Mar. Biol. Assoc. U.K.16: 321–364.

    Article  Google Scholar 

  424. ——. 1930. A study of the spring diatom increase in Loch Striven. Jour. Mar. Biol. Assoc. U.K.16: 853–878.

    Article  Google Scholar 

  425. - and -. 1955. The biology of a marine copepod:Calanus finmarchicus (Gunnerus). 188 pp.

  426. Matsudaira, C. 1952. The catalytic activity of sea-water. III. The effect of the catalytic activity on the growth of diatom. Tohoku Jour. Agr. Res.2(2): 33–40.

    Google Scholar 

  427. Matsue, Y. 1950. [Phytoplankton and its oxidisability by permanganate]. [In Japanese; Eng. sum.]. Bull. Jap. Soc. Sci. Fish.15: 813–817.

    Google Scholar 

  428. -. 1954. Studies on the culture of the marine plankton diatom,Skeletonema costatum (Grev.) Cleve. Rev. Fish. Sci. Japan. 41 pp. [In Japanese].

  429. Maucha, R. 1932. Hydrochemische Methoden in der Limnologie. Binnengewässer, 12. 173 pp.

  430. —. 1942. Das Gleichgewicht des limnischen Lebenraumes. (Ein Versuch, das Holocoen als Schwingungssystem darzustellen). Arch. Hydrobiol. (Plankt.)39: 24–62.

    Google Scholar 

  431. —. 1948. Die Photosynthese des Phytoplanktons vom Gesichtspunkte der Quantenlehre. Hydrobiologia1: 45–62.

    Article  Google Scholar 

  432. Merker, E. 1940. Der Lichtschutz im belebten Wasser. Int. Rev. Hydrobiol.40: 174–196.

    Article  Google Scholar 

  433. Meschkat, A. 1934. Der Bewuchs in den Röhrichten des Plattensees. Arch. Hydrobiol. (Plankt.)27: 436–517.

    Google Scholar 

  434. Meteorological Office, London. 1956. Handbook of meteorological Instruments. Part 1, pp. 330–351.

  435. Meyer, B. S., Bell, F. H., Thompson, L. C., andClay, E. I. 1943. Effect of depth of immersion on apparent photosynthesis in submersed vascular aquatics. Ecology24: 393–399.

    Article  Google Scholar 

  436. Meyer, B. C., andHeritage, A. C. 1941. Effect of turbidity and depth of immersion on apparent photosynthesis inCeratophyllum demersum. Ecology22: 17–22.

    Article  Google Scholar 

  437. Milner, H. W. 1953. The chemical composition of algae.In: Burlew (ed.), Algal culture from laboratory to pilot plant. Publ. Carnegie Inst.600: 285–302.

  438. Minder, L. 1926. Biologisch-chemische Untersuchungen im Zürichsee. Schweiz. Zeits. Hydrol.3: 1–70.

    Google Scholar 

  439. Monod, J. 1949. The growth of bacterial cultures. Ann. Rev. Microbiol.3: 371–394.

    Article  CAS  Google Scholar 

  440. Moore, E. W. 1939. Graphic determination of carbon dioxide and the three forms of alkalinity. Jour. Amer. Wat. Wks. Assoc.31: 51–56.

    CAS  Google Scholar 

  441. —. 1952. The precision of microscopic counts of plankton in water. Jour. Amer. Wat. Wks. Assoc.44: 208–216.

    Google Scholar 

  442. Moore, J. G. 1947. The determination of the depths and extinction coefficients of shallow water by air photography using colour niters. Phil. Trans. A.240: 163–000.

    Article  Google Scholar 

  443. Mortimer, C. H. 1939. Physical and chemical aspects of organic production in lakes. Ann. Appl. Biol.26: 167–172.

    CAS  Google Scholar 

  444. —. 1940. An apparatus for obtaining water from different depths for bacteriological examination. Jour. Hyg.40: 641–646.

    Article  CAS  Google Scholar 

  445. —. 1941; 1942. The exchange of dissolved substances between mud and water in lakes. Jour. Ecol.29: 280–329;30: 147–201.

    Article  CAS  Google Scholar 

  446. —. 1949. Underwater “soils”: a review of lake sediments. Jour. Soil Sci.1: 63–73.

    Article  Google Scholar 

  447. -. 1953. A review of temperature measurement in limnology. Mitt. Int. Ver. Limnol. No. 1. 25 pp.

  448. -. 1956. The oxygen content of air-saturated fresh waters and aids in calculating percentage saturation. Mitt. Int. Ver. Limnol. No. 6. 20 pp.

  449. - andHickling, C. F. 1954. Fertilisers in fishponds. Fish. Publ. [London] No. 5. 155 pp.

  450. - andMoore, W. H. 1953. The use of thermistors for the measurement of lake temperatures. Mitt. Int. Ver. Limnol. No. 2. 42 pp.

  451. Mullin, J. B., andRiley, J. P. 1955. The colorimetric determination of silicate with special reference to sea and natural waters. Anal. Chim. Acta12: 162–176.

    Article  CAS  Google Scholar 

  452. Munk, W. H., andRiley, G. A. 1952. Absorption of nutrients by aquatic plants. Jour. Mar. Res.11: 215–240.

    Google Scholar 

  453. Myers, J. 1951. Physiology of the algae. Ann. Rev. Microbiol.5: 157–180.

    Article  CAS  Google Scholar 

  454. — andKratz, W. A. 1955. Relations between pigment content and photosynthetic characteristics in a blue-green alga. Jour. Gen. Physiol.39: 11–22.

    Article  CAS  Google Scholar 

  455. —,Phillips, J. N., andGraham, J. P. 1951. On the mass culture of algae. Plant Physiol.26: 539–548.

    Article  PubMed  CAS  Google Scholar 

  456. Naumann, E. 1919a. Über einige besonders auffallende Hochproduktionen aus Nanoplankton im Süsswasser. Ber. Deut. Bot. Ges.37: 40–50.

    Google Scholar 

  457. —. 1919b. Eine einfache Methode zum Nachweis bezw. Einsammeln der Eisenbakterien. Ber. Deut. Bot. Ges.37: 76–78.

    Google Scholar 

  458. —. 1923. Spezielle Untersuchungen über die Ernährungsbiologie des tierischen Limnoplanktons. II. Über den Nahrungserwerb und die natürliche Nahrung der Copepoden und der Rotiferen des Limnoplanktons. Acta. Univ. Lund. II.19 (6): 1–17.

    Google Scholar 

  459. —. 1936. Die Lichtverhältnisse des Süsswassers.In: Abderhalden, Handb. Biol. ArbMeth. Bd.9: 2, 1369–1384.

    Google Scholar 

  460. Nelson, P. R., andEdmondson, W. T. 1955. Limnological effects of fertilizing Bare Lake, Alaska. Fish. Bull. U. S.56: 102, 415–436.

    Google Scholar 

  461. Newcombe, C. L. 1949. Attachment materials in relation to water productivity. Trans. Amer. Micr. Soc.68: 355–361.

    Article  Google Scholar 

  462. —. 1950. A quantitative study of attachment materials from Sodon Lake, Michigan. Ecology31: 204–215.

    Article  Google Scholar 

  463. Nielsen, P. H. 1950. An auxiliary apparatus for plankton studies by means of the sedimentation method. Jour. Cons. Int. Explor. Mer16: 307–309.

    Google Scholar 

  464. Nielson, R. S. 1953. Apparatus and methods for the collection of attachment materials in lakes. Progr. Fish. Cult.15: 87–89.

    Article  Google Scholar 

  465. Nihei, T., Sasa, T., Miyachi, S., Suzuki, K., andTamiya, H. 1954. Change of photosynthetic activity ofChlorella cells during the course of their normal life-cycle. Arch. Mikrobiol.21: 156–166.

    PubMed  CAS  Google Scholar 

  466. Nipkow, H. F. 1928. Über das Verhalten der Skelette planktischer Kieselalgen im geschichteten Tiefenschlamm des Zürich- und Baldeggersees. Schweiz. Zeits. Hydrol.4: 71–120.

    Google Scholar 

  467. Nishizawa, S., andAnraka, M. 1956. [A note on measuring of the volume of water filtered by plankton net by means of a flow meter]. Bull. Fac. Fish. Hokkaido Univ.6: 298–309. [In Japanese; Eng. abst.].

    Google Scholar 

  468. Nordli, O. 1950. Precipitate in sea-water samples for the study of plankton. Jour. Cons. Int. Explor. Mer16: 310.

    Google Scholar 

  469. Nultsch, W. 1956. Studien über die Phototaxis der Diatomeen. Arch. Protistenk.101: 1–68.

    CAS  Google Scholar 

  470. Nygaard, G. 1938. Hydrobiologische Studien über dänische Teiche und Seen. I. Teil: Chemisch-physikalische Untersuchungen und Planktonwägungen. Arch. Hydrobiol. (Plankt.)32: 523–692.

    Google Scholar 

  471. —. 1949. Hydrobiological studies on some Danish ponds and lakes. Pt. II. The quotient hypothesis and some new or little known phytoplankton organisms. Biol. Skr.7: 1, 1–293.

    Google Scholar 

  472. —. 1955. On the productivity of five Danish waters. Verh. Int. Ver. Limnol.12: 123–133.

    Google Scholar 

  473. Odum, H. T. 1956. Primary production in flowing waters. Limnol. Oceanogr.1: 102–117.

    Google Scholar 

  474. Ohle, W. 1952. Die hypolimnische Kohlendioxyd-Akkumulation als produktionsbiologischer Indikator. Arch. Hydrobiol. (Plankt.)46: 153–285.

    Google Scholar 

  475. -. 1953. Die chemische und die elektrochemische Bestimmung des molekular gelösten Sauerstoffs der Binnengewässer. Mitt. Int. Ver. Limnol. No. 3. 44 pp.

  476. —. 1955. Beiträge zur Produktionsbiologie der Gewässer. Arch. Hydrobiol. (Plankt.) Suppl.22: 456–479.

    Google Scholar 

  477. —. 1956. Bioactivity, production, and energy utilisation of lakes. Limnol. Oceanogr.1: 139–149.

    Google Scholar 

  478. Oliver, G. C. S. 1955. Biology of Eye Brook Reservoir. II. The second seven years. Jour. Instn. Wat. Engnrs.9: 511–519.

    Google Scholar 

  479. Olson, F. C. W. 1950. Quantitative estimates of filamentous algae. Trans. Amer. Micr. Soc.69: 272–279.

    Article  Google Scholar 

  480. Osterlind, S. 1949. Growth conditions of the algaScenedesmus quadricauda with special reference to the inorganic carbon sources. Symb. Bot. Upsal.10: 1–141.

    Google Scholar 

  481. Palmer, C. M., andMaloney, T. E. 1954. A new counting slide for nannoplankton. Limnol. Soc. Amer., Spec. Publ.21: 1–6.

    Google Scholar 

  482. Parke, M., Manton, I., andClarke, B. 1955. Studies on marine flagellates. II. Three new species ofChrysochromulina. Jour. Mar. Biol. Assoc. U.K.34: 559–609.

    Article  Google Scholar 

  483. Pascher, A. (ed.) 1913–1932. Die Süsswasser-flora Deutschlands, Österreichs und der Schweiz 1–12 (in part called Die Süsswasserflora Mitteleuropas). Jena.

  484. Patrick, R., Hohn, M. H., andWallace, J. H. 1954. A new method for determining the pattern of the diatom flora. Notul. Nat. Acad. Philad. No.259: 1–12.

    Google Scholar 

  485. Pavlovskogo, E. N., andZhadin, V. I. (Ed.). 1956. [Freshwater life of the U.S.S.R.] 4(1). Moskva. Akad. Nauk. pp. 470. [In Russian].

  486. Pearsall, W. H. 1924. Phytoplankton and environment in the English Lake District. Rev. Algol.1: 53–67.

    Google Scholar 

  487. —. 1932. Phytoplankton in the English lakes. II. The composition of the phytoplankton in relation to dissolved substances. Jour. Ecol.20: 241–262.

    Article  CAS  Google Scholar 

  488. -,Gardiner, A. C., andGreenshtelds, F. 1946. Freshwater biology and water supply in Britain. Sci. Publ. Freshwater Biol. Assoc. 11. 90 pp.

  489. — andLoose, L. 1937. The growth ofChlorella vulgaris in pure culture. Proc. Roy. Soc. B.121: 451–501.

    Article  CAS  Google Scholar 

  490. Pearson, E. S., andHartley, H. O. 1954. Biometrika tables for statisticians. Vol.1: 238.

    Google Scholar 

  491. Pennak, R. W. 1955. Comparative limnology of eight Colorado mountain lakes. Univ. Col. Stud. Ser. Biol. No. 2. 75 pp.

  492. Pennington, W. 1941. The control of the numbers of fresh-water phytoplankton by small invertebrate animals. Jour. Ecol.29: 204–211.

    Article  Google Scholar 

  493. —. 1943. Lake sediments: the bottom deposits of the north basin of Windermere, with special reference to the diatom succession. New Phytol.42: 1–27.

    Article  Google Scholar 

  494. Perfiliew, B. 1931. Die mikrozonale Methode als Grundlage litnnologischer Untersuchungen in der Typologie und Geochronologie der Seen, und ein neuer Apparat für Schlammbohrungen vom Boote auf grosse Tiefen. Congr. Int. Oceanogr. Hidrogr. Mar. Hidrol. Continental Seville II, 265–269.

    Google Scholar 

  495. Pettersson, H. 1934. Scattering and extinction of light in sea-water. Göteborgs VetenskSamh. Handl. B.4 (4): 1–16.

    Google Scholar 

  496. —. 1935. Submarine daylight and the transparency of sea water. Jour. Cons. Int. Explor. Mer10: 48–65.

    Google Scholar 

  497. -. 1936a. Das Licht im Meer. Bioklim. Beibl. 1936. 11 pp.

  498. —, 1936b. The transparency of sea water. Rapp. Cons. Explor. Mer101: pt. 2 (_), 1–7.

    Google Scholar 

  499. —,Gross, F., andKoczy, F. 1939. Large-scale plankton cultures. Göteborgs VetenskSamh. Handl. B.6 (13): 1–25.

    Google Scholar 

  500. —,Höglund, H., andLandberg, S. 1934. Submarine daylight and the photosynthesis of phytoplankton. Göteborgs Vetensk-Samh. Handl. B.3(7): 1–13.

    Google Scholar 

  501. — andLandberg, S. 1934. Submarine daylight. Göteborgs VetenskSamh. Handl. B.3 (7): 1–13.

    Google Scholar 

  502. Picken, L. E. R. 1937. The structure of some protozoan communities. Jour. Ecol.25: 368–384.

    Article  Google Scholar 

  503. Poole, H. H. 1936. The photoelectric measurement of submarine illumination in offshore waters. Rapp. Cons. Explor. Mer 101, pt. 2(2). 12 pp.

  504. -. 1938. The effect of surface conditions on the intensity and angular distribution of submarine daylight. Rapp. Cons. Explor. Mer 108, pt. 2(1). 6 pp.

  505. — andAtkins, W. R. G. 1926. On the penetration of light into sea water. Jour. Mar. Biol. Assoc. U.K.14: 177–198.

    Article  Google Scholar 

  506. ——. 1936. The standardisation of photoelectric cells for the measurement of energy. Sci. Proc. Roy. Dublin Soc.21: 363–380.

    CAS  Google Scholar 

  507. Potash, M. 1956. A biological test for determining the potential productivity of water. Ecology37: 631–639.

    Article  CAS  Google Scholar 

  508. Pratt, R. 1940. Influence of the size of the inoculum on the growth ofChlorella vulgaris in freshly prepared culture medium. Amer. Jour. Bot.27: 52–56.

    Article  CAS  Google Scholar 

  509. Prescott, G. W. 1951. Algae of the western Great Lakes area. Bull. Cranbrook Inst. Sci.31: 1–946.

    Google Scholar 

  510. Preston, J. S. 1950. The relative spectral response of the selenium rectifier photo-cell in relation to photometry and the design of spectral correction filters. Jour. Sci. Instrum.27: 135–139.

    Article  Google Scholar 

  511. Pringsheim, E. G. 1946a. Pure cultures of algae. Their preparation and maintenance. 119 pp.

  512. —. 1946b. The biphasic or soil-water culture method for growing algae and flagellata. Jour. Ecol.33: 193–204.

    Article  Google Scholar 

  513. -. 1950. The use of cultures in algal taxonomy. Proc. VII Int. Bot. Congr., Stockholm: 800–803.

  514. —. 1951. Methods for the cultivation of algae. Manual of Phycology. Appendix A., 348–357. Waltham, U.S.A., Chronica Botanica Co.

    Google Scholar 

  515. —. 1952. On the nutrition ofOchromonas. Quart. Jour. Micr. Sci.93: 71–96.

    Google Scholar 

  516. —. 1952–53. Observations on some species ofTrachelomonas grown in culture. New Phytol.52: 93–113, 238–266.

    Article  Google Scholar 

  517. Proctor, C. M., andHood, D. W. 1954. Determination of inorganic phosphate in sea water by an iso-butanol extraction procedure. Jour. Mar. Res.13: 122–132.

    CAS  Google Scholar 

  518. Provasoli, L., McLaughlin, J. J. A., andDroop, M. R. 1957. The development of artificial media for marine algae. Arch. Mikrobiol.25: 392–428.

    Article  PubMed  CAS  Google Scholar 

  519. ——, andPintner, I. J. 1954. Relative and limiting concentrations of major mineral constituents for the growth of algal flagellates. Trans. N. Y. Acad. Sci. II.16: 412–417.

    CAS  Google Scholar 

  520. - andPintner, I. J. 1952. Parallels in composition of synthetic media and lake water in supporting growth ofSynura. Phycol. Soc. Amer., News. Bull.

  521. ——. 1953. Ecological implications ofin vitro nutritional requirements of algal flagellates. Ann. N. Y. Acad. Sci.56: 839–851.

    Article  PubMed  CAS  Google Scholar 

  522. ——, andPacker, L. 1951. Use of antibiotics in obtaining pure cultures of algae and protozoa. Proc. Amer. Soc. Protozool.2: 6.

    Google Scholar 

  523. Prowse, G. A. 1955. The role of phytoplankton in studies on productivity. Verh. Int. Ver. Limnol.12: 159–163.

    Google Scholar 

  524. Puke, C. 1949. A new water sampler. Rep. Inst. Freshw. Res. Drottning.29: 74–75.

    Google Scholar 

  525. Pütter, A. 1924. Der Umfang der Kohlensäurereduktion durch die Planktonalgen. Pflüg. Arch. Ges. Physiol.205: 293–312.

    Article  Google Scholar 

  526. —. 1926. Atmung und Assimilation in Canarienstrom. Arch. Hydrobiol. (Plankt.)17: 597–627.

    Google Scholar 

  527. Quispel, A. 1938. A new method for the investigation of aerial and soil algae. Proc. Acad. Sci. Amst.41 (4). 10 pp.

  528. Rabenhorst, L. 1930–44. Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz.

  529. Rabinowitch, E. I. 1945. Chemistry of photosynthesis, chemosynthesis and related processes in vitro and in vivo. Photosynthesis and related processes. 1. New York: pp. xiv +1–599.

  530. -. 1951. Spectroscopy and fluorescence of photosynthetic pigments; Kinetics of photosynthesis. Photosynthesis and related processes. 2, Part 1. New York: pp. xi + 60–1208.

  531. -. 1956. Kinetics of photosynthesis (cont’d). Addenda to 1 and 2, Part 1. Photosynthesis and related processes. 2, Part 2. New York: pp. xvi +1209–2088.

  532. Rauser-Cernoussowa, D. 1930. Zur Methode der quantitativen Bestimmung des Chlorophylls in rezenten und fossilen Sedimenten. Zentralb. Min. Geol. Paläont. 1930 B: 314–324.

    Google Scholar 

  533. Ravera, O. 1955. Amount of mud displaced by some freshwater Oligochaeta in relation to depth. Mem. 1st. Ital. Idrobiol. Marchi Suppl.8: 247–264.

    Google Scholar 

  534. Rawson, D. S. 1953. The standing crop of net plankton in lakes. Jour. Fish. Res. Bd. Canada10: 224–237.

    Google Scholar 

  535. —. 1955. Morphometry as a dominant factor in the productivity of large lakes. Verh. Int. Ver. Limnol.12: 164–175.

    Google Scholar 

  536. —. 1956a. The net plankton of Great Slave Lake. Jour. Fish. Res. Bd. Canada13: 53–127.

    Google Scholar 

  537. —. 1956b. Algal indicators of trophic lake types. Limnol. Oceanogr.1: 18–25.

    Google Scholar 

  538. Reynolds, N. 1950. Methods of culturing epiphytic algae. New Phytol.49: 155–162.

    Article  Google Scholar 

  539. Rice, T. R. 1953. Phosphorus exchange in marine phytoplankton. Fish. Bull. U.S.54 (80): 77–89.

    Google Scholar 

  540. Richards, F. A. 1952. The estimation and characterization of plankton populations by pigment analyses. I. The absorption spectra of some pigments occurring in diatoms, dinoflagellates and brown algae. Jour. Mar. Res.11: 147–155.

    CAS  Google Scholar 

  541. — andThompson, T. G. 1952. The estimation and characterization of plankton populations by pigment analyses. II. A spectrophotometric method for the estimation of plankton pigments. Jour. Mar. Res.11: 156–172.

    CAS  Google Scholar 

  542. Ricker, W. E. 1937. Statistical treatment of sampling processes useful in the enumeration of plankton organisms. Arch. Hydrobiol. (Plankt.)31: 68–84.

    Google Scholar 

  543. —. 1938a. On adequate quantitative sampling of the pelagic net plankton of a lake. Jour. Fish. Res. Bd. Canada4: 19–32.

    Google Scholar 

  544. —. 1938b. Seasonal and annual variations in quantity of pelagic net plankton, Cultus Lake, British Columbia. Jour. Fish. Res. Bd. Canada.4: 33–47.

    Google Scholar 

  545. Rigler, F. H. 1955. A tracer study of the phosphorus cycle in lake water. Ecology37: 550–562.

    Article  Google Scholar 

  546. Riley, G. A. 1938a. Plankton studies. I. A preliminary investigation of the plankton of the Tortugas region. Jour. Mar. Res.1: 335–352.

    Google Scholar 

  547. —. 1938b. The measurement of phytoplankton. Int. Rev. Hydrobiol.36: 371–373.

    Article  Google Scholar 

  548. —. 1939a. Correlations in aquatic ecology with an example of their application to problems of plankton productivity. Jour. Mar. Res.2: 56–73.

    Google Scholar 

  549. —. 1939b. Plankton studies. II. The western north Atlantic, May-June 1939. Jour. Mar. Res.2: 145–162.

    CAS  Google Scholar 

  550. —. 1940. Limnological studies in Connecticut. III. The plankton of Linsley Pond. Ecol. Monogr.10: 279–306.

    Article  CAS  Google Scholar 

  551. —. 1941a. Plankton studies. IV. Georges Bank. Bull. Bingham Oceanogr. Coll.7: 1–73.

    Google Scholar 

  552. —. 1941b. Plankton studies. V. Regional summary. Jour. Mar. Res.4: 162–171.

    Google Scholar 

  553. —. 1943. Physiological aspects of spring diatom flowerings. Bull. Bingham Oceanogr. Coll.8: 1–53.

    Google Scholar 

  554. —. 1946. Factors controlling phytoplankton populations on Georges Bank. Jour. Mar. Res.6: 54–73.

    Google Scholar 

  555. —. 1947a. A theoretical analysis of the Zooplankton population of Georges Bank. Jour. Mar. Res.6: 104–113.

    Google Scholar 

  556. —. 1947b. Seasonal fluctuations of the phytoplankton in New England coastal waters. Jour. Mar. Res.6: 114–125.

    Google Scholar 

  557. —. 1952a. Phytoplankton of Block Island Sound, 1949. Bull. Bingham Oceanogr. Coll.13 (3): 40–64.

    Google Scholar 

  558. -. 1952b. Biological oceanography. Surv. Biol. Prog.2.

  559. -. 1952c. Discussion of Ahlstrom, E. H. Biological Instruments. Symposium on Oceanographic Instrumentation. Div. Physic. Sci. Nat. Acad. Sci.-Nat. Res. Counc. U.S.A. Publ. 309 46–47.

  560. —. 1953a. Letter to the editor. Jour. Cons. Int. Explor. Mer19: 85–89.

    Google Scholar 

  561. —. 1953b. Theory of growth and competition in natural populations. Jour. Fish. Res. Bd. Canada10: 211–223.

    Google Scholar 

  562. —. 1956. Oceanography of Long Island Sound, 1952–1954. II. Physical Oceanography. Bull. Bingham Oceanogr. Coll.15: 15–46.

    Google Scholar 

  563. — andConover, S. A. M. 1956. Oceanography of Long Island Sound, 1952–1954. III. Chemical oceanography. Bull. Bingham Oceanogr. Coll.15: 47–61.

    Google Scholar 

  564. —,Stommel, H., andBumpus, D. F. 1949. Quantitative ecology of the plankton of the Western North Atlantic. Bull. Bingham Oceanogr. Coll.12 (3): 1–169.

    Google Scholar 

  565. — andVon Arx, R. 1949. Theoretical analysis of seasonal changes in the phytoplankton of Husan Harbor, Korea. Jour. Mar. Res.8: 60–72.

    Google Scholar 

  566. Riley, J. P. 1953. The spectrophotometric determination of ammonia in natural waters with particular reference to sea-water. Analyt. Chim. Acta9: 575–589.

    Article  CAS  Google Scholar 

  567. Roberts, C. H. 1952. An automatic collector for water and plankton samples. Jour. Cons. Int. Explor. Mer18: 107–116.

    Google Scholar 

  568. Rodhe, W. 1946. Zur Verbesserung der quantitativen Planktonmethodik. Zool. Bodr. Uppsala20: 465–477.

    Google Scholar 

  569. —. 1948. Environmental requirements of fresh-water plankton algae. Symb. Bot. Upsal.10 (1): 1–149.

    Google Scholar 

  570. -. 1955a. Fiskevärd och Forskning. Hushålln Sällsk. Blekinge Tidskr. No. 4. 4 pp.

  571. —. 1955b. Can plankton production proceed during winter darkness in subarctic lakes? Verh. Int. Ver. Limnol.12: 117–122.

    Google Scholar 

  572. -,Vollenweider, R. A., andNauwerck, A. 1957. The primary production and standing crop of phytoplankton.In: Symposium on perspectives in marine biology. Scripps Inst. Oceanogr. [In press]. [Cited from Vallentyne, 1957].

  573. Rossolimo, L. L. 1939. [The role ofChironomus plumosus larvae in the exchange of substances between the deposits and the water in a lake]. Arb. Limnol. Sta. Kossino22: 35–52. [In Russian; Eng. sum.].

    Google Scholar 

  574. Round, F. E. 1953. An investigation of two benthic algal communities in Malham Tarn, Yorkshire. Jour. Ecol.41: 174–197.

    Article  Google Scholar 

  575. Rowley, J. R., andDahl, A. O. 1956. Modifications in design and use of the Livingstone piston sampler. Ecology37: 849–851.

    Article  Google Scholar 

  576. Ruschmann, G. 1956. Beiträge zur Mikrobiologie derChlorella. I. Mitteilung:Chlorella-Rein und-Rohkulturen. Biol. Zentralb.75: 129–149.

    Google Scholar 

  577. Rustad, E. 1946. Experiments on photosynthesis and respiration at different depths in the Oslo Fjord. Nytt. Mag. Nat.85: 223–229.

    Google Scholar 

  578. Ruttner, F. 1924. Eine biologische Methode zur Untersuchung des Lichtklimas im Wasser. Naturwiss.12: 1166–1167.

    Article  Google Scholar 

  579. —. 1925. Die biologische Station in Lunz (Kupelwiesersche Stiftung), ihre Einrichtung und Arbeitsweise. Handb. Biol. ArbMeth. Abt. 9,2: 499–542.

    Google Scholar 

  580. —. 1926a. Über die Kohlensäureassimilation einiger Wasserpflanzen in verschiedenen Tiefen des Lunzer Untersees. Int. Rev. Hydrobiol.15: 1–30.

    Article  Google Scholar 

  581. —. 1926b. Über den Gaswechsel vonElodea-Sprossen verschiedener Tiefenstandorte unter den Lichtbedingungen grösserer Seetiefen. Planta2: 588–599.

    Article  Google Scholar 

  582. —. 1930. Das Plankton des Lunzer Untersees. Seine Verteilung in Raum und Zeit während der Jahre 1908–1913. Int. Rev. Hydrobiol.23: 1–138, 161–287.

    Article  Google Scholar 

  583. —. 1933. Ein mobiles Laboratorium für limnologische Untersuchungen. Int. Rev. Hydrobiol.29: 148–154.

    Article  Google Scholar 

  584. —. 1937a. Ökotypen mit verschiedener Vertikalverteilung im Plankton der Alpenseen. Int. Rev. Hydrobiol.35: 7–34.

    Article  Google Scholar 

  585. —. 1937b. Limnologische Studien an einigen Seen der Ostalpen. Arch. Hydrobiol. (Plankt.)32: 167–319.

    Google Scholar 

  586. —. 1948. Die Methoden der quantitativen Planktonforschung. Mikroskopie3: 39–51.

    Google Scholar 

  587. —. 1949. Die Veränderung des Äquivalentleitvermögens als Mass der Karbonatassimilation der Wasserpflanzen. Schweiz. Zeits. Hydrol.11: 72–89.

    Article  Google Scholar 

  588. —. 1952. Planktonstudien der Deutschen Limnologischen Sunda-Expedition. Arch. Hydrobiol. (Plankt.) Suppl.21: 1–271.

    Google Scholar 

  589. -. 1953a. Fundamentals of limnology. Univ. Toronto Press. 242 pp. [Translation of Ruttner (1940), Grundriss der Limnologie (Berlin) by Frey, D. G., and Fry, F. E. J.].

  590. —. 1953b. Die Kohlenstoffquellen für die Kohlensäureas-similation submerser Wasserpflanzen. Scientia, Bologna. Ser. 6.47: 1–8.

    Google Scholar 

  591. — andHermann, K. 1937. Über Temperaturmessungen mit einem neuen Modell des Lunzer Wasserschöpfers. Arch Hydrobiol. (Plankt.)31: 682–686.

    Google Scholar 

  592. — andSauberer, F. 1938. Durchsichtigkeit des Wassers und Planktonschichtung. Int. Rev. Hydrobiol.37: 405–419.

    Article  Google Scholar 

  593. Rylov, W. M. 1927. Ueber die unmittelbare Verwendung der Kolkwitzschen Planktonkammer zur Entnahme des Planktons aus verschiedenen Tiefen. Arch. Hydrobiol. (Plankt.)18: 60–64.

    Google Scholar 

  594. Ryther, J. H. 1954a. The ecology of phytoplankton blooms in Moriches Bay and Great South Bay, Long Island, New York. Woods Hole, Oceanogr. Inst., Biol. Bull.106: 198–209.

    Article  Google Scholar 

  595. —. 1954b. The ratio of photosynthesis to respiration in marine plankton algae and its effect upon the measurement of productivity. Deep-Sea Res.2: 134–139.

    Google Scholar 

  596. —. 1956a. Photosynthesis in the sea as a function of light intensity. Limnol. Oceanogr.1: 61–70.

    Google Scholar 

  597. —. 1956b. The measurement of primary production. Limnol. Oceanogr.1: 72–84.

    Google Scholar 

  598. — andVaccaro, R. F. 1954. A comparison of the oxygen and14C methods of measuring marine photosynthesis. Jour. Cons. Int. Explor. Mer20: 25–34.

    CAS  Google Scholar 

  599. Sagromsky, H. 1943. Die Bedeutung des Lichtfaktors für den Gaswechsel planktischer Diatomeen und Chlorophyceen. Planta33: 299–339.

    Article  CAS  Google Scholar 

  600. Sandell, E. B. 1944. Colorimetric determination of traces of metals. 487 pp.

  601. Sargent, M. C. 1940. A theoretical definition of production. Proc. VI Pac. Sci. Congr. 1939. Vol.3: 513–516.

    Google Scholar 

  602. Sauberer, F. 1938. Zur Methodik der Durchsichtigkeitmessungen im Wasser und deren Anwendung in der Limnologie. Arch. Hydrobiol. (Plankt.)33: 343–360.

    Google Scholar 

  603. —. 1939a. Über die Lichtverhältnisse der Binnenseen. Bioklim. Beibl.6: 33–41.

    Google Scholar 

  604. —. 1939b. Beiträge zur Kenntnis des Lichtklimas einiger Alpenseen. Int. Rey. Hydrobiol.39: 20–55.

    Article  Google Scholar 

  605. —. 1945. Beiträge zur Kenntnis der optischen Eigenschaften der Kärntner Seen. Arch. Hydrobiol. (Plankt.)41: 259–314.

    Google Scholar 

  606. — andEckel, O. 1938. Zur Methodik der Strahlungsmessungen unter Wasser. Int. Rev. Hydrobiol.37: 257–289.

    Article  Google Scholar 

  607. - andRuttner, F. 1941. Die Strahlungsverhältnisse der Binnengewässer. Prob. Kosm. Phys. 21.

  608. Schmidt-Ries, H. 1936. Grundsätzliches zur Zentrifugenmethode. Arch. Hydrobiol. (Plankt.)29: 553–616.

    Google Scholar 

  609. Schmitz, W. 1950a. Flammenphotometrische Analysenverfahren in der Wasseranalyse. Jber. Limnol. Flusssta. Freudenthal (1950): 45–59.

  610. —. 1950b. Quantitative Phytoplankton—Untersuchung mit Membranfilten. Jber. Limnol. Flusssta. Freudenthal1950: 60–65.

    Google Scholar 

  611. —. 1952. Zweite Mitteilung über die Quantitative Phytoplankton-Untersuchung mit Membranfilten. Ber. Limnol. Flusssta. Freudenthal3: 87–88.

    Google Scholar 

  612. —. 1953a. Die Anwendung optischer Messmethoden zur Erforschung der Binnengewässer. Vom Wasser20: 127–136.

    Google Scholar 

  613. —. 1953b. Ein neues Gerät zur kombinierten Messung von verschiedenen physiographischen Faktoren in Fliessgewässern. Ber. Limnol. Flusssta. Freudenthal4: 49–50.

    Google Scholar 

  614. Schmolinsky, F. 1954. Einige Ergebnisse vergleichender Lichtmessungen an Seen des Hochschwarzwaldes und der Schweiz. Arch. Hydrobiol. (Plankt.), Suppl.20: 615–632.

    Google Scholar 

  615. Schoenborn, H. W. 1949. Growth of protozoa in glassware cleaned with sulphuric acid-potassium dichromate solution. Physiol. Zool.22: 30–35.

    PubMed  CAS  Google Scholar 

  616. Schomer, H. A. 1934. Photosynthesis of water plants at various depths in the lakes of northeastern Wisconsin. Ecology15: 217–218.

    Article  Google Scholar 

  617. — andJuday, C. 1935. Photosynthesis of algae at different depths in some lakes of northeastern Wisconsin. I. Observations of 1933. Trans. Wis. Acad. Sci., Arts & Lett.29: 173–193.

    CAS  Google Scholar 

  618. Schreiber, E. 1927. Die Reinkultur von marinem Phytoplankton und deren Bedeutung für die Erforschung der Produktionsfähigkeit des Meerwassers. Wiss. Meeresuntersuch. N.F. Abt. Helgoland,16 (10): 1–34.

    Google Scholar 

  619. —. 1929. Die Methoden einer physiologischen Meerwasseranalyse. Rapp. Cons. Explor. Mer53: 75–79.

    Google Scholar 

  620. Schröter, C., andVogler, P. 1901. Variationsstatische Untersuchung überFragilaria crotonensis (Edw.) Kitton im Plankton des Zürichsees in den Jahren 1896–1901. Vjschr. naturf. Ges. Zürich.46: 185–206.

    Google Scholar 

  621. Scourfield, D. J. 1897. The logarithmic plotting of certain biological data. Jour. Quekett. Micr. Club6: 419–423.

    Google Scholar 

  622. Sekiguti, R., Asahina, T., andKitaoka, T. 1936. Observations of optical and chemical properties of the water of Lake Kawaguti and Lake Saiko in the Fuji Lake District. [In Japanese; Eng. sum. in “Abstracts of Memoirs”, p. 67]. Jour. Met. Soc. Japan, II.14: 211–218.

    Google Scholar 

  623. Serfling, R. E. 1949. Quantitative estimation of plankton from small samples of Sedgewick-Rafter-Cell mounts of concentrate samples. Trans. Amer. Micr. Soc.68: 185–199.

    Article  Google Scholar 

  624. Shcherbakov, A. P. 1954. Produktsiya organicheskogo Veshchestva fytoplanktona Glubokom ozere. Trud. Vsesoyuz. Gidrobiol. Obshch.5: 224–253.

    Google Scholar 

  625. Shropshire, R. F. 1944. Plankton harvesting. Jour. Mar. Res.5: 185–188.

    Google Scholar 

  626. Skuja, H. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schwed. Symb. Bot. Upsal.9 (3): 1–399.

    Google Scholar 

  627. -. 1956. Taxonomische und biologische Studien über das Phytoplankton Schwedischer Binnengewässer. Nova Acta Soc. Sci. Upsal. IV.16(3). 404 pp.

  628. Slack, H. D. 1955. A quantitative plankton net for horizontal sampling. Hydrobiologia7: 204–268.

    Article  Google Scholar 

  629. Slater, J. C. 1954. The quantitative evaluation of dissolved organic matter in natural waters. Trans. Amer. Micr. Soc.73 (4): 416–423.

    Article  Google Scholar 

  630. Smith, F. E. 1952. Experimental methods in population dynamics: a critique. Ecology33: 441–450.

    Article  Google Scholar 

  631. Smith, G. M. 1920. Phytoplankton on the inland lakes of Wisconsin. Pt. 1. Bull. Wis. Geol. & Nat. Hist. Surv. 57: Ser. 12, 1–243. Madison, U.S.A.

  632. -. 1924. Phytoplankton of the inland lakes of Wisconsin. Pt. 2. Bull. Wis. Geol. & Nat. Hist. Surv.57: 1–227. Madison, U.S.A.

  633. -. 1950. Fresh-water algae of the United States. 2nd Ed. 716 pp.

  634. Smith, J. H. C., andBenitez, A. 1956. Chlorophylls: analysis in plant materials.In: Paech, K., and Tracey, M. V. (ed.), Modern methods of plant analysis. Vol. 4.

  635. Smithsonian Meteorological Tables. 1951. 6th Rev. Ed. Smithson. Inst., Misc. Coll. 114. i-xi +1-527.

  636. Smyth, J. S. 1955. A study of the benthic diatoms of Loch Sween (Argyll). Jour. Ecol.43: 149–171.

    Article  Google Scholar 

  637. Snell, F. D., andSnell, C. T. 1936. Colorimetric methods of analysis. Vol. 1. Inorganic. 766 pp.

  638. Snow, L. M., andFred, E. B. 1926. Some characteristics of the bacteria of Lake Mendota. Trans. Wis. Acad. Sci., Arts. & Lett.22: 143–154.

    Google Scholar 

  639. Soule, F. M. 1932. Oceanographic instruments and methods.In: Physics of the earth, 5. Oceanography, pp. 4111–4141. Bull. Nat. Res. Coun., Wash., no. 85.

  640. Spencer, C. P. 1952. On the use of antibiotics for isolating bacteriafree cultures of marine phytoplankton organisms. Jour. Mar. Biol. Assoc. U.K.31: 97–106.

    Article  Google Scholar 

  641. —. 1954. Studies on the culture of a marine diatom. Jour. Mar. Biol. Assoc. U.K.33: 265–290.

    Article  Google Scholar 

  642. Spilhaus, A. F., andMiller, A. R. 1948. The sea sampler. Jour. Mar. Res.7: 370–385.

    CAS  Google Scholar 

  643. Stagg, J. M. 1950. Solar radiation at Kew Observatory. Geophys. Mem., Lond. No. 86.11: 1–37.

    Google Scholar 

  644. Starr, R. C. 1949. A method of effecting zygospore germination in certain Chlorophyceae. Proc. Nat. Acad. Sci. [Wash.]35: 453–456.

    Article  CAS  Google Scholar 

  645. Starr, T. J. 1956. Relative amounts of vitamin B12 in detritus from oceanic and estuarine environments near Sapelo Island, Georgia. Ecology37: 658–664.

    Article  CAS  Google Scholar 

  646. Steele, J. H. 1956. Plant production on the Fladen Ground. Jour. Mar. Biol. Assoc. U.K.35: 1–33.

    Article  CAS  Google Scholar 

  647. Steemann Nielsen, E. 1932. Einleitende Untersuchungen über die Stoffproduktion des Planktons. Medd. Komm. Havundersøg. Kbh., Ser. Plankton.2: 1–14.

    Google Scholar 

  648. —. 1933. Über quantitative Untersuchung von marinem Plankton mit Utermöhls umgekehrtem Mikroskop. Jour. Cons. Int. Explor. Mer8: 201–210.

    Google Scholar 

  649. —. 1937. The annual amount of organic matter produced by the phytoplankton in the sound off Helsingør. Medd. Komm. Havundersøg., Kbh., Ser. Plankton.3: 1–37.

    Google Scholar 

  650. —. 1938. Über die Anwendung von Netzfängen bei quantitativen Phytoplanktonuntersuchungen. Jour. Cons. Int. Explor. Mer13: 197–205.

    Google Scholar 

  651. —. 1940. Die Produktionsbedingungen des Phytoplanktons im Übergangsgebeit zwischen der Nord- und Ostsee. Medd. Komm. Havundersøg., Kbh. Ser. Plankton3 (4): 1–55.

    Google Scholar 

  652. -. 1947. Photosynthesis of aquatic plants with special reference to the carbon sources. Dansk. Bot. Ark.12 (8).

  653. —. 1951. The marine vegetation of the Isefjord. A study on ecology and production. Medd. Komm. Havundersøg., Kbh., Ser. Plankton.5 (4): 1–114.

    Google Scholar 

  654. —. 1952. The use of radio-active carbon (C14) for measuring organic production in the sea. Jour. Cons. Int. Explor. Mer18: 117–140.

    Google Scholar 

  655. —. 1954. On organic production in the oceans. Jour. Cons. Int. Explor. Mer19: 309–328.

    Google Scholar 

  656. —. 1955a. The production of organic matter by the phytoplankton in a Danish lake receiving extraordinarily great amounts of nutrient salts. Hydrobiologia7: 68–74.

    Article  Google Scholar 

  657. —. 1955b. The production of antibiotics by plankton algae and its effect upon bacterial activities in the sea. Pap. Mar. Biol. Oceanogr., Deep-Sea Res. Suppl.3: 281–286.

    Google Scholar 

  658. —. 1955c. Production of organic matter in the oceans. Jour. Mar. Res.14: 374–386.

    Google Scholar 

  659. —. 1955d. The interaction of photosynthesis and respiration and its importance for the determination of14C-discrimination in photosynthesis. Physiol. Plant.8: 945–953.

    Article  Google Scholar 

  660. — andAl Kholy, A. A. 1956. Use of14C-technique in measuring photosynthesis of phosphorus or nitrogen deficient algae. Physiol. Plant.9: 144–153.

    Article  Google Scholar 

  661. — andBrand, T. v. 1934. Quantitative Zentrifugen-Methoden zur Planktonbestimmung. Rapp. Cons. Explor. Mer89E (12): 99–100.

    Google Scholar 

  662. Steleanu, A. 1953–4. The problem of the effect on and control of lake plankton by physical factors. Acta Hydrophysica1: 45–56.

    Google Scholar 

  663. Stenz, E. 1937. Über die Transmission der Sonnenstrahlung in den Wigry-Seen. Beitr. Geophys.50: 368–375.

    Google Scholar 

  664. —. 1938. Sur la transmission de la radiation solaire dans les lacs de Wigry. [In Polish; French sum.]. Arch. Hydrob. Rybact.11: 1–23.

    Google Scholar 

  665. Strack-Weyland, B. 1938. Die Photosynthese bei Süsswasser-algen in Abhängigkeit von der plasmatischen Lichteinstellung und vom physiologischen Zustand der Piastiden. Protoplasma30: 216–253.

    Article  Google Scholar 

  666. Strøm, K. M. 1928. Active reaction of the medium and the growth ofHormidium forms. Bull. Soc. Bot. Geneve20 (1): 1–9.

    Google Scholar 

  667. —. 1931. New hydrographic apparatus. Int. Rev. Hydrobiol.25: 206–271.

    Google Scholar 

  668. —. 1933. Nutrition of algae. Arch. Hydrobiol. (Plankt.)25: 38–47.

    Google Scholar 

  669. Strugger, S. 1948. Der Gegenwärtige Stand der Forschung auf dem Gebiet der fluoreszenmikroskopischen Untersuchung der Bakterien. Mikroskopie3: 23–38.

    Google Scholar 

  670. “Student”. 1907. On the error of counting with a haemocytometer. Biometrika5: 351–360.

    Google Scholar 

  671. Sugawara, K. 1934. Liesegang’s stratification developed in the diatomaceous gyttja from Lake Haruna, and problems related to it. Bull. Chem. Soc. Japan9: 402–409.

    Article  CAS  Google Scholar 

  672. —. 1939. Chemical studies in lake metabolism. Bull. Chem. Soc. Japan14 (Suppl.): 375–451 (1–77).

    Article  CAS  Google Scholar 

  673. Sverdrup, H. U. 1953. On conditions for the vernal blooming of phytoplankton. Jour. Cons. Int. Explor. Mer18: 287–295.

    Google Scholar 

  674. -,Johnson, M. W., andFleming, R. H. 1942. The oceans, their physics, chemistry and general biology. 1087 pp.

  675. Talling, J. F. 1955a. An experimental study of the growth and photosynthesis of some freshwater plankton diatoms. Ph.D. thesis, Univ. Leeds.

  676. —. 1955b. The relative growth rates of three plankton diatoms in relation to underwater radiation and temperature. Ann. Bot. [London] N.S.19: 329–341.

    Google Scholar 

  677. —. 1955c. The light-relations of phytoplankton populations. Verh. Int. Ver. Limnol.12: 141–142.

    Google Scholar 

  678. —. 1957a. Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytol.56: 29–50.

    Article  Google Scholar 

  679. -. 1957b. The phytoplankton population as a compound photosynthetic system. New Phytol.56 [In press].

  680. —. 1957c. Diurnal changes of stratification and photosynthesis in some tropical African waters. Proc. Roy. Soc. B.147: 57–83.

    Article  CAS  Google Scholar 

  681. —. 1957d. Some observations on the stratification of Lake Victoria. Limnol. Oceanogr.2: 213–221.

    Google Scholar 

  682. -. 1957e. The longitudinal succession of water characteristics in the White Nile. Hydrobiologia9: [In press].

  683. Tamiya, H. 1951. Some preliminary notes on the kinetics of algal growth. Bot. Mag. [Tokyo]64: 167–173.

    Google Scholar 

  684. Taylor, E. W. (Ed.). 1949. The examination of waters and water supplies. 6th Ed.

  685. Taylor, C. B., andCollins, V. G. 1949. Development of bacteria in waters stored in glass containers. Jour. Gen. Microbiol.3: 32–42.

    CAS  Google Scholar 

  686. Tchan, Y. T. 1952. Counting soil algae by direct fluorescence microscopy. Nature [London]170: 328–329.

    Article  CAS  Google Scholar 

  687. — andWhitehouse, M. A. 1953. Study of soil algae. II. The variation of algal production in sandy soils. Proc. Linn. Soc. New So. Wales78: 160–170.

    Google Scholar 

  688. Teiling, E. 1916. En Kaledonisk fytoplanktonformation. Svensk. Bot. Tidskr.10: 506–519.

    Google Scholar 

  689. Thienemann, A. 1926. Die Binnengewässer Mitteleuropas. Binnengewässer1: 1–255.

    Google Scholar 

  690. Thomas, E. A. 1950. Beitrag zur Methodik der Produktionsforschung in Seen. Schweiz. Zeits. Hydrol.12: 25–37.

    Article  Google Scholar 

  691. Thomasson, H. 1925. Methoden zur Untersuchungen der Mikrophyten der limnischen Litoral- und Profundalzone.In: Abderhalden, Handb. Biol. ArbMeth. Bd.9 (2): 681–712.

    Google Scholar 

  692. Thunmark, S. 1945. Zur Soziologie des Süsswasserplanktons. Folia Limnol. Scand. No.3: 1–66.

    Google Scholar 

  693. Tiffany, L. H. 1930. The Oedogoniaceae: A monograph. 253 pp.

  694. Toman. 1950. The variability of diatomaceae. Preslia11: 75–83.

    Google Scholar 

  695. Tonolli, V. 1951. A new device for continuous quantitative plankton sampling: the plankton bar. Verh. Int. Ver. Limnol.11: 422–429.

    Google Scholar 

  696. Topali, C. 1923. Recherches de physiologie sur les Algues. Thèse, Genève, Inst. Bot. 39 pp.

  697. Transeau, E. N. 1951. The Zynemataceae. 327 pp.

  698. Troshin, A. S. 1956. [The method of radioactive indicators and its application in hydrobiology]. [In Russian.In: Pavlovskogo, E. N., and Zhadin, V. I. (ed.), Freshwater life of the U.S.S.R. Vol. 4(1), chap.42: 414–437].

  699. Tucker, A. 1948. The phytoplankton of the Bay of Quinte. Trans. Amer. Micr. Soc.67: 365–383.

    Article  Google Scholar 

  700. Tucker, A. 1949. Pigment extraction as a method of quantitative analysis of phytoplankton. Trans. Amer. Micr. Soc.68: 21–32.

    Article  Google Scholar 

  701. Tutin, W. 1955. Preliminary observations on a year’s cycle of sedimentation in Windermere, England. Mem. 1st. Ital. Idrobiol. Marchi. Suppl.8: 467–484.

    Google Scholar 

  702. Utermöhl, H. 1925. Limnologische Phytoplanktonstudien. Die Besiedlung ostholsteinischer Seen mit Schwebepflanzen. Arch. Hydrobiol. (Plankt.) Suppl.5: pp. 527.

    Google Scholar 

  703. —. 1927. Untersuchungen über den Gesamtplanktongehalt des Kanarenstromes. Arch. Hydrobiol. (Plankt.)18: 464–525.

    Google Scholar 

  704. —. 1931a. Neue Wege in der quantitativen Erfassung des Planktons. Verh. Int. Ver. Limnol.5: 567–597.

    Google Scholar 

  705. —. 1931b. Über das umgekehrte Mikroskop. Arch. Hydrobiol. (Plankt.)22: 643–645.

    Google Scholar 

  706. —. 1936. Quantitative Methoden zur Untersuchung des Nannoplanktons.In: Abderhalden Handb. Biol. ArbMeth. Bd.9 (2): 1879–1937.

    Google Scholar 

  707. Utterback, C. L., andHiggs, P. M. 1938. A submarine photometer for studying the distribution of daylight in the sea. Jour. Opt. Soc. Amer.28: 100.

    Article  Google Scholar 

  708. Vaas, F. K., andHofstede, A. E. 1952. Studies onTilapta mossamblica Peters (ikan mudjair) in Indonesia. Contr. Inl. Fish. Res. Stas. Bogor Indonesia, No.1: 1–68.

    Google Scholar 

  709. Vaccaro, R. F., andRyther, J. H. 1954. The bactericidal effects of sunlight in relation to “light” and “dark” bottle photosynthesis experiments. Jour. Cons. Int. Explor. Mer20: 18–24.

    Google Scholar 

  710. Vallentyne, J. R. 1954. Biochemical limnology. Science119: 605–606.

    Article  PubMed  CAS  Google Scholar 

  711. —. 1955a. A modification of the Livingstone piston sampler for lake deposits. Ecology36: 139–141.

    Article  Google Scholar 

  712. —. 1955b. A laboratory study of the formation of sediment bands. Amer. Jour. Sci.253: 540–552.

    Google Scholar 

  713. —. 1955c. Sedimentary chlorophyll determination as a paleobotanical method. Canad. Jour. Bot.33: 304–313.

    Article  CAS  Google Scholar 

  714. —. 1956. Epiphasic carotenoids in post-glacial lake sediments. Limnol. Oceanogr.1: 252–262.

    Google Scholar 

  715. —. 1957. The molecular nature of organic matter in lakes and oceans, with lesser reference to sewage and terrestrial soils. Jour. Fish. Res. Bd. Canada14: 33–82.

    CAS  Google Scholar 

  716. — andCraston, D. F. 1957. Sedimentary chlorophyll degradation products in surface muds from Connecticut lakes. Canad. Jour. Bot.35: 35–42.

    Article  CAS  Google Scholar 

  717. Van Niel, C. B. 1949. The kinetics of growth of micro-organisms. In: Parpart, A. K. (ed.), The chemistry and physiology of growth. pp. 91–105.

  718. Velasquez, G. T. 1940. On the viability of algae obtained from the digestive tract of the gizzard shad,Dorosma cepedianum (Le Sueur). Amer. Midl. Nat.22: 376–412.

    Article  Google Scholar 

  719. Vercelli, F. 1939. Misure subacquee di radiazione in alcuni laghi alpini. Boll. Pesca Piscic. Idrobiol.15: 485–511.

    Google Scholar 

  720. Verduin, J. 1950. Quantum theory and phytoplankton photosynthesis. Science112: 260.

    Article  PubMed  Google Scholar 

  721. —. 1951a. Photosynthesis in naturally reared aquatic communities. Plant Physiol.26: 45–49.

    Article  PubMed  CAS  Google Scholar 

  722. —. 1951b. Comparison of spring diatom crops of western Lake Erie in 1949 and 1950. Ecology32: 662–668.

    Article  Google Scholar 

  723. —. 1951c. A comparison of phytoplankton data obtained by a mobile sampling method with those obtained from a single station. Amer. Jour. Bot.38: 5–11.

    Article  Google Scholar 

  724. —. 1952a. The calculus and the inoperable expression. Ecology33: 116.

    Article  Google Scholar 

  725. —. 1952b. Photosynthesis and growth rates of two diatom communities in western Lake Erie. Ecology33: 163–168.

    Article  Google Scholar 

  726. —. 1952c. The volume-based photosynthetic rates of aquatic plants. Amer. Jour. Bot.39: 157–159.

    Article  CAS  Google Scholar 

  727. —. 1954. Phytoplankton and turbidity in western Lake Erie. Ecology35: 550–561.

    Article  Google Scholar 

  728. —. 1956a. Energy fixation and utilisation by natural communities in western Lake Erie. Ecology37: 40–50.

    Article  Google Scholar 

  729. —. 1956b. Primary production in lakes. Limnol. Oceanogr.1: 85–91.

    Google Scholar 

  730. Vetter, H. 1937. Bemerkungen über das Phytoplankton und seine Beziehungen zur Ernährung des Crustaceenplanktons im Schussen-altwasser und im Bühelweiher. Schr. Ver. Gesch. Bodensees Umgeb. 64. 15 pp.

  731. Vinberg, G. G. 1934. Versuch zum Studium der Photosynthese und der Atmung des Seewassers. Zur Frage ueber die Bilanz des organischen Stoffes. (Mitteilung I). [In Russian; German summary]. Arb. Limnol. Sta. Kossino18: 5–24.

    Google Scholar 

  732. —. 1937a. Beobachtungen über die Intensität der Atmung und Photosynthese des Planktons der Fischzuchteiche. Mitteilung III. Arb. Limnol. Sta. Kossino21: 61–74.

    Google Scholar 

  733. —. 1937b. Einige Beobachtungen über die Humusseen. Zur Frage der Bilanz des organischen Stoffes. Mitteilung IV. Arb. Limnol. Sta. Kossino21: 75–88.

    Google Scholar 

  734. —. 1940. Measurement of the rate of exchange of oxygen between a water basin and the atmosphere. Comp. Rend. Acad. Sci. U.R.S.S.26: 666–669.

    CAS  Google Scholar 

  735. —. 1955. Significance of photosynthesis for oxygen enrichment of water during self-purification of polluted waters. Trud. Vsesoyuz. Gidrobiol. Obshch.6: 46–69. [In Russian].

    CAS  Google Scholar 

  736. — andIvanova, A. I. 1935. Versuch zum Studium der Photosynthese und der Atmung des Seewassers. Zur Frage über die Bilanz des organischen Stoffes. II. Mitteilung. [In Russian; Germany summary]. Arb. Limnol. Sta. Kossino20: 5–34.

    Google Scholar 

  737. — andKusnetzova, Z. J. 1939. Observations on the photosynthesis and the respiration of the water mass in Lake Glubokoie. On the question of the balance of organic substances. Communication V. [In Russian; English summary]. Arb. Limnol. Sta. Kossino22: 144–155.

    Google Scholar 

  738. — andYarovitzina, L. I. 1939. Daily changes in the quantity of dissolved oxygen as a method for measuring the value of primary production. [In Russian; English summary]. Arb. Limnol. Sta. Kossino22: 128–143.

    Google Scholar 

  739. — andZakharenkov, I. S. 1950. Quantitative aspects of the role of plankton in the cycle of substances in lakes. [In Russian]. Comp. Rend. Acad. Sci. U.R.S.S.73: 1037–1040.

    Google Scholar 

  740. — et al. 1955. Employing radioactive isotopic phosphorus for studying fertilisation of ponds. Comp. Rend. Acad. Sci. U.R.S.S.100: 575–578. [In Russian].

    CAS  Google Scholar 

  741. Vine, A. C. 1952. Oceanographie instruments for measuring temperature. Symposium on Oceanographie Instrumentation. Nat. Acad. Sci. [U.S.A.] Div. Physic. Sci., Bull.309: 55–65.

    Google Scholar 

  742. Vinogradov, A. P. 1953. The elementary chemical composition of marine organisms. New Haven: Sears Found. Mar. Res. Mem. 2. 647 pp.

  743. Vischer, W. 1937. Die Kultur der Heterokonten.In: Pascher, A., Heterokonten. Rabenhorst’s Kryptogamenflora11(1937–38): 190–202.

  744. Volk, R. 1901. Die bei den Hamburger Elbe-Untersuchungen angewandten Methoden zur quantitativen Ermittlung des Planktons. Mitt. Naturh. Mus. Hamb.18: 137–182. 1900.

    Google Scholar 

  745. —. 1906. Hamburgische Elbe-Untersuchung. VIII. Studien über die Einwirkung der Trockenperiode im Sommer 1904 auf die biologischen Verhältnisse der Elbe bei Hamburg. Mit einem Nachtrag über chemische und planktologische Methoden. Mitt. Naturh. Mus. Hamb. Z Beih.23 (1905): 1–101.

    Google Scholar 

  746. Vollenweider, R. A. 1950. Ökologische Untersuchungen von planktischen Algen auf experimenteller Grundlage. Schweiz. Zeits. Hydrol.12: 193–262.

    Article  Google Scholar 

  747. —. 1955. Ein Nomogramm zur Bestimmung des Transmis-sionskoeffizienten sowie einige Bemerkungen zur Methode seine Berechnung in der Limnologie. Schweiz. Zeits. Hydrol.17: 205–216.

    Article  Google Scholar 

  748. —. 1956a. L’influenza della torbidita’ provocata dalle acque di piena nel Bacino di Pallanza (Lago Maggiore). Mem. 1st. Ital. Idrobiol. Marchi9: 85–111.

    Google Scholar 

  749. —. 1956b. Das Strahlungsklima des Lago Maggiore und seine Bedeutung für die Photosynthese des Phytoplanktons. Mem. Ist. Ital. Idrobiol. de Marchi9: 293–362.

    Google Scholar 

  750. Von Brand, T. 1935. Methods for the determination of nitrogen and carbon in small amounts of plankton. Woods Hole Oceanog. Inst., Biol. Bull.69: 221–232.

    Article  Google Scholar 

  751. Votintsev, K. K. 1952. The energy of photosynthesis and seasonal changes in the biomass ofMelosira baicalensis Wisl. Comp. Rend. Acad. Sci. U.R.S.S.84: 607–610. [In Russian].

    CAS  Google Scholar 

  752. Vouk, V. 1948. Thermal-vegetation and ecological-valences theory. Hydrobiologia1: 90–95.

    Article  Google Scholar 

  753. Walker, C. R. 1955. A modification of the Kemmerer water bottle for sampling shallow waters. Prog. Fish. Cult.17: 41.

    Article  Google Scholar 

  754. Walker, R. C. 1948. Photoelectric cells in industry. 517 pp.

  755. Ward, J. 1955. A description of a new Zooplankton counter. Quart. Jour. Micr. Sci.96: 371–373.

    Google Scholar 

  756. Ward, H. B. 1900. A comparative study in methods of plankton measurement. Trans. Amer. Micr. Soc.21: 227–247.

    Article  Google Scholar 

  757. Waris, H. 1953. The significance for algae of chelating substances in the nutrient solution. Physiol. Plant.6: 538–543.

    Article  CAS  Google Scholar 

  758. Wasmund, E. 1936. Technik der Unterwasserbohrung auf Bohrfähren. Handb. Biol. ArbMeth. Bd. 9, 2/II, 1839–78.

  759. Weimann, R. 1934. Hydrobiologische und hydrographische Untersuchungen an zwei teichartigen Gewässern. Beih. Bot. Zentralb. II.51: 397–476.

    Google Scholar 

  760. Welch, B. S. 1948. Limnological methods. 381 pp.

  761. -. 1952. Limnology. 2nd Ed. 538 pp.

  762. Wereshchagin, G. J., Anickova, N. J., andForsch, T. B. 1931. Methoden der hydrochemischen Analyse in der limnologischen Praxis. Int. Ver. Limnol. Arb. Stand. Komm.1: 230 pp.

  763. Werff, A. Van der. 1950. On a new material for screening plankton. Amsterdam Nat.1: 53–54.

    Google Scholar 

  764. Werner, B. 1939. Über ein neues, automatisch schliessendes Bodennetz. Int. Rev. Hydrobiol.38: 368–371.

    Article  Google Scholar 

  765. Wesenberg-Lund, C. 1904. Plankton investigations of the Danish lakes. Special Pub. Danish Freshwater Biol. Lab. Op. 5.

  766. —. 1905. A comparative study of the lakes of Scotland and Denmark. Proc. Roy. Soc. Edinb.25: 401–448.

    Google Scholar 

  767. -. 1908. Plankton investigations of the Danish lakes. Copenhagen.

  768. -. 1908. Plankton investigations of the Danish lakes. The Baltic freshwater plankton, its origin and variation. pp. 17–54. Variation-statistical investigations on diatoms. Danish Freshwater Biol. Lab. Op. 5. Copenhagen.

  769. West, W. and G. S. 1904–1923. The British Desmidiaceae. I-IV, V (West, G. S. and Carter, N.). Ray Soc. London.

  770. —. 1909. The British fresh-water phytoplankton, with special reference to the desmid plankton and the distribution of British desmids. Proc. Roy. Soc. B81: 165–206.

    Article  Google Scholar 

  771. West, G. S., andFritsch, F. E. 1927. A treatise on the British freshwater algae. 534 pp.

  772. Whipple, G. C. 1894. A standard unit of size for micro-organisms. Amer. Month Micr. Jour.15: 377–381.

    Google Scholar 

  773. —. 1896. Some experiments on the growth of diatoms. Tech. Quart.9: 145–168.

    Google Scholar 

  774. -. 1927. The microscopy of drinking water (revised by Fair, G. M., and Whipple, M. C.). 586 pp.

  775. — andJackson, D. D. 1899.Asterionella—its biology, its chemistry, and its effect on water supplies. New Eng. Wat. Wks. Assoc.14: 1–25.

    Google Scholar 

  776. Whitney, L. V. 1938a. Transmission of solar energy and the scattering produced by suspensoids in lake waters. Trans. Wis. Acad. Sci., Arts. & Lett.31: 201–221.

    CAS  Google Scholar 

  777. —. 1938b. Continuous solar radiation measurements in Wisconsin lakes. Trans. Wis. Acad. Sci., Arts. & Lett.31: 175–200.

    CAS  Google Scholar 

  778. —. 1941a. A general law of diminution of light intensity in natural waters and the percent of diffuse light at different depths. Jour. Opt. Soc. Amer.31: 714–722.

    Article  Google Scholar 

  779. —. 1941b. A multiple electromagnetic water sampler. Trans. Wis. Acad. Sci., Arts. & Lett.33: 95–97.

    CAS  Google Scholar 

  780. Whitney, R. J. 1938. A syringe pipette method for the determination of oxygen in the field. Jour. Exp. Biol.15: 564–570.

    CAS  Google Scholar 

  781. Wiborg, K. F. 1951. The whirl vessel, an apparatus for the fractioning of plankton samples. Fiskeridir. Skr. Havundersøk.11: 1–16.

    Google Scholar 

  782. Wiedling, S. 1941. A skeleton-free diatom. Bot. Not.1941: 33–36.

    Google Scholar 

  783. —. 1948. Beiträge zur Kenntnis der vegetativen Vermehrung der Diatomeen. Bot. Not.1948: 322–354.

    Google Scholar 

  784. Williams, E. A., andUtterback, C. L. 1935. Seasonal changes in components of submarine daylight. Jour. Opt. Soc. Amer.25: 384–387.

    Article  Google Scholar 

  785. Wilson, D. P. 1946. The triradiate and other forms ofNitsschia closterium (Ehr.) W. Smith f.minutissima of Allen and Nelson. Jour. Mar. Biol. Assoc. U.K.26: 235–270.

    Article  Google Scholar 

  786. Wimpenny, R. S. 1937. A new form of Hensen net bucket. Jour. Cons. Int. Explor. Mer12: 178–181.

    Google Scholar 

  787. Winokuh, M. 1948. Growth relationships ofChlorella species. Amer. Jour. Bot.35: 118–129.

    Article  Google Scholar 

  788. Winsor, C. P., andClarke, G. L. 1940. A statistical study of variation in the catch of plankton nets. Jour. Mar. Res.3: 1–34.

    Google Scholar 

  789. — andWalford, L. A. 1936. Sampling variations in the use of plankton nets. Jour. Cons. Int. Explor. Mer11: 190–204.

    Google Scholar 

  790. Withrow, R. B., andWithrow, A. P. 1956. Generation, control, and measurement of visible and near-visible radiant energy.In: Hollaender, A. (ed.). Radiation biology. Vol. 3. Visible and near-visible light. pp. 125–258.

  791. Wohlschlag, D. E., andHasler, A. D. 1951. Some quantitative aspects of algal growth in Lake Mendota. Ecology32: 581–593.

    Article  Google Scholar 

  792. Wood, E. J. F. 1955. Fluorescent microscopy in marine microbiology. Jour. Cons. Int. Explor. Mer21: 6–7.

    Google Scholar 

  793. Wulff, A. 1926. Nannoplankton-Untersuchungen in der Nordsee. Wiss. Meeresuntersuch. Abt. Helgoland. N.F. 15, 3, Abh. 16, 1–44.

  794. Wunder, W. 1935. Die Planktonröhre aus Cellhorn, ein neues hydrobiologisches Gerät. Arch. Hydrobiol. (Plankt.)28: 659–662.

    Google Scholar 

  795. Yentsch, C. S., andDuxbury, A. C. 1956. Some of the factors affecting the calibration number of the Clarke-Bumpus quantitative plankton sampler. Limnol. Oceanogr.1: 268–273.

    Google Scholar 

  796. Yoshimura, S. 1935. A new water bottle for the study of the assimilation of water plants. Jap. Jour. Limnol.5: 146–147.

    Google Scholar 

  797. —. 1936. Photosynthesis ofChara at various depths of Lake Asinoko, Hakone. [In Japanese; Eng. sum. on pp. 56–57 of “Abstracts of Memoirs”]. Jour. Met. Soc. Japan. II.14: 124–129.

    Google Scholar 

  798. —. 1938. Dissolved oxygen of the lake waters of Japan. Sci. Rep. Tokyo Bunrika Daig C, No.8: 63–277.

    Google Scholar 

  799. Young, O. W. 1945. A limnological investigation of periphyton in Douglas Lake, Michigan. Trans. Amer. Micr. Soc.64: 1–20.

    Article  Google Scholar 

  800. Young, R. T. 1938. On the calculation of absorption coefficients of daylight in natural waters. Jour. Opt. Soc. Amer.28: 95–99.

    Article  Google Scholar 

  801. Yount, J. L. 1956. Factors that control species numbers in Silver Springs, Florida. Limnol. Oceanogr.1: 286–295.

    Article  Google Scholar 

  802. Zinn, D. J., andIfft, J. D. 1941. A new limnophotometer with a special adaptation for the measurement of the penetration of light through ice under natural conditions. Ecology22: 209–211.

    Article  Google Scholar 

  803. Zobell, C. E., andLong, J. H. 1938. Studies on the isolation of bacteria-free cultures of marine phytoplankton. Jour. Mar. Res.1: 328–334.

    Google Scholar 

  804. Zsigmondy, R., andBachmann, W. 1918. Über neue Filter. Zeits. Anorg. Chem.103: 119–128.

    Article  CAS  Google Scholar 

  805. Züllig, H. 1955. Sedimente als Ausdruck des Zustandes eines Gewässers. Mem. Ist. Ital. Idrobiol. Marchi Suppl.8: 485–530.

    Google Scholar 

  806. —. 1956. Das kombinierte Ramm-Kolben-Lot, ein leichtes Bohrgerät zur vereinfachten Gewinnung mehrere Meter langer, ungestörter Sedimentprofile. Schweiz. Zeits. Hydrol.18: 208–214.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lund, J.W.G., Talling, J.F. Botanical limnological methods with special reference to the algae. Bot. Rev 23, 489–583 (1957). https://doi.org/10.1007/BF02870144

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02870144

Keywords

Navigation