Skip to main content
Log in

Lignotubers and burls— their structure, function and ecological significance in Mediterranean ecosystems

The Botanical Review Aims and scope Submit manuscript

Abstract

Vegetative regeneration provides for immediate tissue replacement and reestablishment of the “parent” genotype, after the aerial canopy of a perennial plant is partially or wholly destroyed. If the frequency of destruction of above-ground biomass (e.g., by fire) is such that tissue replacement (production) is the predominant mode of growth, this regenerative capacity may preadapt the plant for reproduction via vegetative growth.

In the perennial shrubs of the California chaparral, and in other similar Mediterranean-type ecosystems, one of the most significant modes of reproduction is characterized by sprouting after injury of new stem or root tissue from an ontogenetically produced swollen stem base/root crown known as a lignotuber (or “burl”). Lignotubers have been well described inEucalyptus (Myrtaceae) and observed in other families in the Mediterranean-type climate regions. “Burls” of shrubs in the family Ericaceae are morphologically similar to lignotubers. The term “burl” is vague in meaning, since it has been used to describe any anomalous or unusual woody structure with a swirled grain. The term lignotuber, which has a more restricted usage referring only to ontogenetically produced structures, should henceforth be used to describe these swollen “root crowns.” Investigations of lignotuber (burl) anatomy have revealed that the wood contains dormant buds, carbohydrates, and nutrients necessary for bud development.

Reproductive strategies and tactics have evolved partially in response to the frequency and severity of disturbance (e.g., fire in shrublands of Mediterranean-type ecosystems). Reproductive strategies are defined by the timing and mode of production and reproduction. Reproductive tactics are the options of “reproductive effort” and energy allocation within each strategy. In the chaparral, fynbos, macchia, etc., one prevalent tactic in the sprouting strategy is the allocation of energy to the woody structure which has sprouting as its prime function—the lignotuber.

Resúmen

La regeneratión vegetativa asegura la repositión inmediata de tejido y el re-establecimiento del genotipo “paterno” después que el dosel de una planta perenne ha sido total o parcialmente destruído. Si la frequencia de destructión de la biomasa por encima del nivel del suelo (por ejemplo, por fuego) es tal que el re-emplazamiento o productión de tejido es la forma de crecimiento predominante, esta capacidad regenerativa puede preadaptar a la planta para la reproducción via crecimiento vegetativo.

En los arbustos perennes del chaparral Californiano y en otros ecosistemas similares de tipo Mediterráneo, uno de los modos de reproducción más significativos está caracterizado por el retoño, después de una herida, de un tallo nuevo o del tejido de la raíz a partir de la base hinchada de un tallo o de la corona de la raíz, producidos ontogenéticamente conocido como lignotubo. Lignotubos han sido descritos en detalle enEucalyptus (Myrtáceae) y observados en otras familias en regiones con clima de tipo Mediterráneo. Los “nudos” en los arbustos de la familia Ericáceae son similares morfológicamente a los lignotubos. El término “nudo” tiene un significado un tanto vago puesto que ha sido usado para describir cualquier estructura anómala con un grano en espiral presente en la madera. El término lignotubo tiene un uso más restringido refiriéndose solamente a estructuras producidas ontogenéticamente y debería ser usado para describir estas hinchadas “coronas de la raíz.” Investigaciones de la anatomía del lignotubo (nudo) han revelado que la madera contiene brotes durmientes, carbohidratos, y los nutrientes necesarios para el desarrollo del brote.

Tácticas y estrategias reproductivas han evolucionado parcialmente en respuesta a la frecuencia y severidad del trastorno (por ejemplo, fuego en las áreas arbustivas de los ecosistemas de tipo Mediterráneo.) Las estrategias reproductivas están definidas en base a la coordination temporal y el modo de producción y reproducción. Las tácticas reproductivas son las opciones de “esfuerzo reproductivo” y distributión de energía para cada estrategia. En el chaparral, fynbos, macchia, etc., una táctica en la estrategia del brote es la distributión de energía a favor de la estructura vegetativa que tiene como función primordial el retoñar: el lignotubo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Acocks, J. P. H. 1953. Veld types of South Africa. Mem. Bot. Surv. S. Afr. 28.

  • Axelrod, D. I. 1958. Evolution of the Madro-Tertiary geoflora. Bot. Rev.24: 433–509.

    Google Scholar 

  • — 1973. History of the Mediterranean ecosystem in California. Pages 225–277in F. di Castri and H. Mooney (eds.), Mediterranean type ecosystems, origin and structure. Springer-Verlag, New York.

    Google Scholar 

  • — 1975. Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Ann. Missouri Bot. Garden62: 289–334.

    Article  Google Scholar 

  • Baker, G. A., P. W. Rundel andD. J. Parsons. 1982. Comparative phenology and growth in three chaparral shrubs. Bot. Gaz.143: 94–100.

    Article  Google Scholar 

  • Bamber, R. K. andK. J. Mullette. 1978. Studies of the lignotubers ofEucalyptus gummifera (Gaertn. and Hochr.) II. Anatomy. Austral. J. Bot.26: 15–22.

    Article  Google Scholar 

  • Barrett, L. I. 1941. War revives an old industry. Amer. Forests47: 503–506, 543.

    Google Scholar 

  • Bazzaz, F. A., R. W. Carlson andJ. L. Harper. 1979. Contribution to reproductive effort by photosynthesis of flowers and fruits. Nature279: 554–555.

    Article  Google Scholar 

  • Beadle, N. C. W. 1968. Some aspects of the ecology and physiology of Australian xeromorphic plants. Austral. J. Sci.30: 348–355.

    Google Scholar 

  • Bell, A. D. andP. B. Tomlinson. 1980. Adaptive architecture in rhizomatous plants. J. Linn. Soc., Bot.80: 125–160.

    Google Scholar 

  • Blake, T. J. 1972. Studies on the lignotubers ofEucalyptus obliqua (L’Hérit.) III. The effects of seasonal and nutritional factors on dormant bud development. New Phytol.71(2): 327–334.

    Article  Google Scholar 

  • — andB. B. Carrodus. 1970. Studies on the lignotubers ofEucalyptus obliqua (L’Hérit.) II. Endogenous inhibitor levels correlated with apical dominance. New Phytol.69: 1073–1079.

    Article  CAS  Google Scholar 

  • Boe, K. N. 1965. Natural regeneration in old-growth redwood cuttings. U.S.D.A. For. Serv. Res. Note PSW-94. Pacific Southwest For. and Range Expt. Sta., Berkeley, Calif.

    Google Scholar 

  • Burbidge, N. T. 1960. The phytogeography of the Australian region. Austral. J. Bot.8: 75–211.

    Article  Google Scholar 

  • Cable, D. R. 1973. Fire effects in southwestern semidesert grass-shrub communities. Proc. Ann. Tall Timbers Fire Ecol. Conf.12: 109–127.

    Google Scholar 

  • Calow, P. 1979. The cost of reproduction—A physiological approach. Biol. Rev.54: 23–40.

    Article  PubMed  CAS  Google Scholar 

  • Cant, C. M. 1937. Stem structure in the Maddenii series of rhododendrons. Trans. Bot. Soc. Edinburgh32: 287–291.

    Google Scholar 

  • Carlquist, S. J. 1975. Wood anatomy and relationships of the Geissolomataceae. Bull. Torrey Bot. Club102: 128–134.

    Article  Google Scholar 

  • — 1977. Wood anatomy of Grubbiaceae. J. S. Afr. Bot.43: 129–144.

    Google Scholar 

  • — 1978. Wood anatomy of Bruniaceae: Correlations with ecology, phylogeny, and organography. Aliso9(2): 323–364.

    Google Scholar 

  • — andL. DeBuhr. 1977. Wood anatomy of Peneaceae (Myrtales): Comparative, phylogenetic, and ecological implications. J. Linn. Soc., Bot.75: 211–227.

    Google Scholar 

  • Carpenter, F. L. andH. F. Recher. 1979. Pollination, reproduction and fire. Amer. Naturalist1(6): 871–879.

    Google Scholar 

  • Carter, C. E. 1929. Lignotubers. Austral. Forest. J.12: 119–121.

    Google Scholar 

  • Chattaway, M. M. 1958. Bud development and lignotuber formation in eucalypts. Austral. J. Bot.6: 103–115.

    Article  Google Scholar 

  • Christensen, N. L. 1973. Fire and the nitrogen cycle in California chaparral. Science181: 66–68.

    Article  PubMed  CAS  Google Scholar 

  • — andC. H. Muller. 1975. Effects of fire on factors controlling plant growth inAdenostoma chaparral. Ecol. Monogr.45: 29–55.

    Article  Google Scholar 

  • Cody, M. L. 1966. A general theory of clutch size. Evolution20: 174–184.

    Article  Google Scholar 

  • — andH. A. Mooney. 1978. Convergence versus nonconvergence in Mediterranean-climate ecosystems. Ann. Rev. Ecol. Syst.9: 265–321.

    Article  Google Scholar 

  • Cohen, D. 1976. The optimal timing of reproduction. Amer. Naturalist110: 801–807.

    Article  Google Scholar 

  • Cole, L. C. 1954. The population consequences of life history phenomena. Quart. Rev. Biol.29: 103–137.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, W. S. 1922. The broad sclerophyll vegetation of California. Publ. Carnegie Inst. Wash. 319.

  • Countryman, C. M. andC. W. Philpot. 1970. Physical characteristics of chamise as a wildland fuel. U.S.D.A. Forest Service Res. Paper PSW-66. Pacific Southwest Forest and Range Experiment Station, Berkeley, California.

    Google Scholar 

  • Craddock, G. W. 1929. The successional influence of fire on the chaparral type. M.S. Thesis. Univ. Calif. Library, Berkeley (unpublished).

    Google Scholar 

  • Cronemiller, F. P. 1942. Chaparral. Madroño6: 199.

    Google Scholar 

  • Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia Univ. Press, New York.

    Google Scholar 

  • Denslow, J. S. 1980. Patterns of plant species diversity during succession under different disturbance regimes. Oecologia46: 18–21.

    Article  Google Scholar 

  • di Castri, F., D. Goodall andR. L. Specht (eds.). 1981. Mediterranean shrublands. Elsevier Publishing Co., Amsterdam.

    Google Scholar 

  • Donald, C. M. 1962. In search of yield. J. Austral. Inst. Agr. Sci.28: 171–178.

    Google Scholar 

  • Donart, G. B. andC. W. Cook. 1970. Carbohydrate reserve content of mountain range plants following defoliation and regrowth. J. Range Managern.23: 15–19.

    CAS  Google Scholar 

  • Doust, J. L. 1980. A comparative study of life history and resource allocation in selected Umbelliferae. Biol. J. Linn. Soc.13: 139–154.

    Article  Google Scholar 

  • Eiten, S. 1972. The cerrado vegetation of Brazil. Bot. Rev.38: 201–341.

    Article  Google Scholar 

  • Flinn, M. A. andB. W. Wein. 1977. Depth of underground plant organs and theoretical survival during fire. Canad. J. Bot.55: 2550–2554.

    Article  Google Scholar 

  • Fulton, R. E. andF. L. Carpenter. 1979. Pollination, reproduction, and fire in CaliforniaArctostaphylos. Oecologia38: 147–157.

    Article  Google Scholar 

  • Gadgil, M. andW. H. Bossert. 1970. Life historical consequences of natural selection. Amer. Naturalist104: 1–24.

    Article  Google Scholar 

  • — andO. T. Solbrig. 1972. The concept of “r-” and “K-” selection: Evidence from wild flowers and some theoretical considerations. Amer. Naturalist106: 14–31.

    Article  Google Scholar 

  • Gardner, C. A. 1957. The fire factor in relation to the vegetation of western Australia. West. Austral. Naturalist5: 166–173.

    Google Scholar 

  • Garland, H. andL. Marion. 1960. California manzanita for smoking pipes. U.S.D.A. For. Serv. PSW Misc. Paper 53. Pacific Southwest For. and Range Expt. Sta., Berkeley, Calif.

    Google Scholar 

  • Gill, A. M. 1981. Adaptive responses of Australian vascular plant species to fires. Pages 243–272in A. M. Gill, R. H. Groves and I. R. Noble (eds.), Fire and the Australian biota. Austral. Acad. Sci. Canberra.

    Google Scholar 

  • Grant, V. 1971. Plant speciation. Columbia University Press, New York.

    Google Scholar 

  • Grime, J. P. 1979. Plant strategies and vegetation processes. J. Wiley and Sons, New York.

    Google Scholar 

  • Grubb, P. J. 1977. The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biol. Rev.52: 107–145.

    Article  Google Scholar 

  • Hairston, N. G., D. W. Tinkle andH. M. Wilbur. 1970. Natural selection and the parameters of population growth. J. Wildl. Managern.34(4): 681–690.

    Article  Google Scholar 

  • Hanes, T. L. 1965. Ecological studies on two closely related chaparral shrubs in southern California. Ecol. Monogr.35: 213–235.

    Article  Google Scholar 

  • — 1971. Succession after fire in the chaparral of southern California. Ecol. Monogr.41: 27–52.

    Article  Google Scholar 

  • — andH. W. Jones. 1967. Postfire chaparral succession in southern California. Ecology48(2): 259–264.

    Article  Google Scholar 

  • Harper, J. L. 1967. A Darwinian approach to plant ecology. J. Ecol.55(2): 247–270.

    Article  Google Scholar 

  • — 1977. Population biology of plants. Academic Press, San Francisco.

    Google Scholar 

  • — andJ. Ogden. 1970. The reproductive strategy of higher plants I. The concept of strategy with special reference toSenecio vulgaris L. J. Ecol.58: 681–698.

    Article  Google Scholar 

  • Hellmers, H., J. S. Horton, G. Juhren andJ. O’Keefe. 1955. Root systems of some chaparral plants in southern California. Ecology36(4): 667–678.

    Article  Google Scholar 

  • Horton, J. S. andC. J. Kraebel. 1955. Development of vegetation after fire in the chamise chaparral of southern California. Ecology36: 244–262.

    Article  Google Scholar 

  • Howard, T.M. 1973. Studies in the ecology ofNothofagus cunninghamii Oerst. II. Phenology. Austral. J. Bot.21: 79–92.

    Article  Google Scholar 

  • Jepson, W. L. 1916. Regeneration in manzanita. Madroño1: 3–11.

    Google Scholar 

  • — 1939. A flora of California, Vol. 3. Univ. of Calif. Press, Berkeley, California.

    Google Scholar 

  • Johnson, A. W., J. G. Packer andG. Reese. 1965. Polyploidy, distribution, and environment. Pages 497–507in H. E. Wright and D. G. Frey (eds.), The quaternary of the United States. Princeton Univ. Press, Princeton, New Jersey.

    Google Scholar 

  • Jones, M. B. andH. M. Laude. 1960. Relationships between sprouting in chamise and the physiological condition of the plant. J. Range. Managern.13(4): 210–214.

    CAS  Google Scholar 

  • Karschon, R. 1971. Lignotuber occurrence inEucalyptus camaldulensis Dehn, and its phylogenetic significance. Flora160(5): 495–510.

    Google Scholar 

  • Kayll, A. J. andC. H. Gimingham. 1965. Vegetative regeneration ofCalluna vulgaris after fire. J. Ecol.53: 729–734.

    Article  Google Scholar 

  • Keeley, J. E. 1973. The adaptive significance of obligate seeding shrubs in the chaparral. M.S. Thesis. San Diego State Univ., San Diego, Calif.

    Google Scholar 

  • — 1977. Seed production, seed populations in soil, and seedling production after fire for two congeneric pairs of sprouting and non-sprouting chaparral shrubs. Ecology58: 820–829.

    Article  Google Scholar 

  • -. 1981. Reproductive cycles and fire regimes. Pages 231–277in H. A. Mooney et al. (eds.), Fire regimes and ecosystem properties. U.S.D.A. For. Serv. Gen. Tech. Rep. WO-26. Washington, D.C.

  • — andS. C. Keeley. 1977. Energy allocation patterns of a sprouting and nonsprouting species ofArctostaphylos in the California chaparral. Amer. Midl. Naturalist98(1): 1–10.

    Article  Google Scholar 

  • — andP. H. Zedler 1978. Reproduction of chaparral shrubs after fire: A comparison of the sprouting and seed strategies. Amer. Midl. Naturalist99(1): 142–161.

    Article  Google Scholar 

  • Keeley, S. C. andA. W. Johnson. 1977. A comparison of the pattern of herb and shrub growth in comparable sites in Chile and California. Amer. Midl. Naturalist97(1): 120–132.

    Article  Google Scholar 

  • Ken, L. R. 1925. The lignotubers of eucalypt seedlings. Proc. Royal Soc. Victoria37: 79–97.

    Google Scholar 

  • Korovin, V. V. 1971. On the biological significance of birch burls. Moskovskoe Obshchestvo Ispytatelei Prirody Bulleten, Otdel Biologicheskii76(2): 113–118.

    Google Scholar 

  • Kruger, F. J. 1979a. South African heathlands. Pages 19–80in R. L. Specht (ed.), Heathlands and related shrublands 9A. Elsevier Scientific Publishing Co., New York.

    Google Scholar 

  • — 1979b. Plant ecology. Pages 88–126in J. Day, G. N. Loaw, W. R. Siegfried and M. L. Jatman (eds.), Fynbos ecology: A preliminary synthesis. South African Natl. Sci. Programmes Rep. No. 40, CSIR, Pretoria.

    Google Scholar 

  • Kummerow, J., D. Krause andW. Jow. 1977. Root systems of chaparral shrubs. Oecologia29: 163–177.

    Google Scholar 

  • Lacey, C. J. 1974. Rhizomes in tropical eucalypts and their role in recovery from fire damage. Austral. J. Bot.22: 29–38.

    Article  Google Scholar 

  • A. N. Gillison andM. I. Whitecross. 1982. Root formation by stemsof Eucalyptus botryoides Sm. in natural stands. Austral. J. Bot.30: 147–159.

    Article  Google Scholar 

  • Ladiges, P. Y. 1974. Differentiation in some populationsof Eucalyptus viminalis in relation to factors affecting seedling establishment. Austral. J. Bot.22: 471–487.

    Article  Google Scholar 

  • — andD. H. Ashton. 1974. Variation in some central Victorian populations ofEucalyptus viminalis Labill. Austral. J. Bot.22: 81–102.

    Article  Google Scholar 

  • MacArthur, R. H. andE. O. Wilson. 1967. The theory of island biogeography. Princeton Univ. Press, Princeton, New Jersey.

    Google Scholar 

  • McMinn, H. E. 1939. An illustrated manual of California shrubs. Univ. of Calif. Press, Berkeley.

    Google Scholar 

  • Miller, E. H., Jr. 1947. Growth and environmental conditions in southern California chaparral. Amer. Midl. Naturalist37: 379–420.

    Article  Google Scholar 

  • Moll, E. J., R. L. Specht and P. T. Manders. In press. The role of woody underground parts in survival and growth.In F. J. Kruger et al. (eds.), Proc. third international conf. Mediterranean-type ecosystems.

  • Mooney, H. A. andE. L. Dunn. 1970. Convergent evolution of Mediterranean-climate evergreen sclerophyll shrubs. Evolution24: 292–303.

    Article  Google Scholar 

  • —,J. Kummerow, A. Johnson, S. Keeley, A. Hoffman, R. Hays, J. Gilberte, andC. Chu. 1977. The producers—Their resources and adaptive responses. Pages 85–143in H. A. Mooney (ed.), Convergent evolution in California and Chile. Dowden, Hutchinson, and Ross, Inc. Stroudsberg, Pennsylvania.

    Google Scholar 

  • — andP. W. Rundel. 1979. Nutrient relations of the evergreen shrub,Adenostoma fasciculatum, in the California chaparral. Bot. Gaz.140: 109–113.

    Article  CAS  Google Scholar 

  • Mullette, K. J. 1978. Studies of the lignotubers ofEucalyptus gummifera Gaertn. and Hochr. I. The nature of the lignotuber. Austral. J. Bot.26: 9–13.

    Article  Google Scholar 

  • — andR. K. Bamber. 1978. Studies of the lignotubers ofEucalyptus gummifera Gaertn. and Hochr. III. Inheritance and chemical composition. Austral. J. Bot.26: 23–28.

    Article  CAS  Google Scholar 

  • Munz, P. andD. D. Keck. 1968. A California flora with supplement. Univ. of Calif. Press, Berkeley.

    Google Scholar 

  • Mutch, R. W. 1970. Wildland fires and ecosystems-A hypothesis. Ecology51(6): 1046–1051.

    Article  Google Scholar 

  • Naveh, Z. 1967. Mediterranean ecosystems and vegetation types in California and Israel. Ecology48(3): 445–459.

    Article  Google Scholar 

  • — 1974. Effects of fire in the Mediterranean region. Pages 401–434in T. T. Kozlowski and C. E. Ahlgren (eds.), Fire and ecosystems. Academic Press, New York.

    Google Scholar 

  • — 1975. The evolutionary significance of fire in the Mediterranean region. Vegetatio29(3): 199–208.

    Article  Google Scholar 

  • Noble, I. R. and R. O. Slatyer. 1977. Post-fire succession of plants in Mediterranean ecosystems. Pages 27–36in H. A. Mooney and C. E. Conrad (eds.), Proc. symp. environ. conseq. fire and fuel manage. in the Mediterranean ecosystems. U.S.D.A. For. Serv. Gen. Tech. Rep. WO-3. Washington, D.C.

  • Ogden, J. 1968. Studies on reproductive strategy with particular reference to selected composites. Ph.D. Thesis. University of Wales.

  • — 1974. The reproductive strategy of higher plants. II. The reproductive strategy ofTussilago farfara L. J. Ecol.62: 291–324.

    Article  Google Scholar 

  • Patric, J. H. andT. L. Hanes. 1964. Chaparral succession in a San Gabriel Mountain area in California. Ecology45: 353–360.

    Article  Google Scholar 

  • Phillips, I. D. J. 1975. Apical dominance. Ann. Rev. Pl. Physiol.26: 341–367.

    Article  CAS  Google Scholar 

  • Philpot, C. W. 1977. Vegetative features as determinants of fire frequency and intensity. Pages 12–16in H. A. Mooney and C. E. Conrad (eds.), Proc. symp. environ, conseq. fire and fuel manage, in the Mediterranean ecosystems. U.S.D.A. For. Serv. Gen. Tech. Rep. WO-3. Washington, D.C.

  • Pianka, E. R. 1970. On r- and K-selection. Amer. Naturalist104: 592–597.

    Article  Google Scholar 

  • Pitelka, L. F. 1977. Energy allocation in annual and perennial lupines (Lupinus: Leguminosae). Ecology58: 1055–1065.

    Article  Google Scholar 

  • Plumb, T. R. 1961. Sprouting of chaparral by December after a wildfire in July. U.S.D.A. For. Serv. Tech. Paper PSW-57. Pacific Southwest For. and Range Expt. Sta., Berkeley, Calif.

    Google Scholar 

  • — 1963. Delayed sprouting of scrub oak after a fire. U.S.D.A. For. Serv. Res. Note PSW-1. Pacific Southwest For. and Range Expt. Sta., Berkeley, California.

    Google Scholar 

  • Radosevich, S. R., S. G. Conard and D. R. Adams. 1977. Regrowth responses of chamise following fire. Pages 378–382in H. A. Mooney and C. E. Conrad (eds.), Proc. symp. environ, conseq. fire and fuel manage in the Mediterranean ecosystems. U.S.D.A. For. Serv. Gen. Tech. Rep. WO-3. Washington, D.C.

  • Roughgarden, J. 1971. Density-dependent natural selection. Ecology52(3): 453–468.

    Article  Google Scholar 

  • Rourke, J. P. 1972. Taxonomic studies onLeucospermum. J. South Afr. Bot. Suppl. Vol. 8.

  • Rubinstein, B. andM. A. Nagao. 1976. Lateral bud outgrowth and its control by the apex. Bot. Rev.42: 83–113.

    CAS  Google Scholar 

  • Rundel, P. W. andD. J. Parsons. 1980. Nutrient changes in two chaparral shrubs along a fire-induced age gradient. Amer. J. Bot.67(1): 51–58.

    Article  Google Scholar 

  • Sampson, A. W. 1944. Plant succession on burned chaparral lands in northern California. Univ. Calif. Coll. Agric. Exp. Sta. Bull.685: 1–144.

    Google Scholar 

  • — andB. S. Jespersen. 1963. California range brushlands and browse plants. Calif. Agric. Exp. Sta. Manual 33. University of California, Berkeley.

    Google Scholar 

  • Schier, G. A. 1976. Physiological and environmental factors controlling vegetative regeneration of aspen. Pages 20–23in Proc. symp. utilization and marketing as tools for aspen management in the Rocky Mountains. U.S.D.A. Forest Service Gen. Tech. Report RM-29. Rocky Mtn. For. and Range Expt. Sta., Fort Collins, Colorado.

    Google Scholar 

  • Schlesinger, W. H., J. T. Gray, D. S. Gill andB. E. Mahall. 1982.Ceanothus megacarpus chaparral: A synthesis of ecosystem processes during development and annual growth. Bot. Rev.48: 71–117.

    Article  Google Scholar 

  • Shafi, M. I. andG. A. Yarranton. 1973. Vegetational heterogeneity during a secondary (posture) succession. Canad. J. Bot.51: 73–90.

    Article  Google Scholar 

  • Specht, R. L. (ed.). 1979. Heathlands and related shrublands. Elsevier Publishing Co., Amsterdam.

    Google Scholar 

  • — 1981. Responses to fires in heathlands and related shrublands. Pages 394–415in A. M. Gill, R. H. Groves and I. R. Noble (eds., Canberra. Fire and the Australian biota. Australian Academy of Sciences, Canberra.

    Google Scholar 

  • —,E. J. Moll, F. Pressinger andJ. Sommerville. 1983. Moisture regime and nutrient control of seasonal growth in Mediterranean ecosystems. Pages 120–132in F. J. Kruger, D. T. Mitchell and J. U. M. Jarvis (eds.), Mediterranean-type ecosystems: The role of nutrients. Springer-Verlag, Berlin.

    Google Scholar 

  • — andP. Rayson. 1957. Dark Island Heath (Ninety-Mile Plain, South Australia). I. Definition of the ecosystem. Austral. J. Bot.5: 52–85.

    Article  Google Scholar 

  • St. John, T. V. 1976. The dependence of certain conifers on fire as a mineralizing agent. Ph.D. Thesis. University of California, Irvine.

    Google Scholar 

  • Stebbins, G. L. 1974. Flowering plants: Evolution above the species level. Belknap Press, Cambridge, Massachusetts.

    Google Scholar 

  • Stone, E. C. andG. Juhren. 1953. Fire-stimulated germination. Calif. Agric.7: 13–14.

    Google Scholar 

  • Stone, E. L. andS. Cornwall. 1968. Basal bud burls inBetula populifolia. Forest Sci.14: 64–65.

    Google Scholar 

  • Sturges, D. L. andM. J. Trlica. 1978. Root weights and carbohydrate reserves of big sagebrush. Ecology59(6): 1282–1285.

    Article  Google Scholar 

  • Sweeney, J. R. 1956. Responses of vegetation to fire. Univ. Calif. Publ. Bot.28(4): 143–250.

    Google Scholar 

  • Van der Merwe, P. 1966. Die flora van Swartboskloof, Stellenbosch, en die herstel van die soorte na’n brand. Ann. Uniw. Stellenbosch, Reeks A, Wis-Natuurk.41: 690–737.

    Google Scholar 

  • Vogl, R. J. andP. K. Schorr. 1972. Fire and manzanita chaparral in the San Jacinto Mountains, Calif. Ecology53: 1179–1188.

    Google Scholar 

  • Walker, B. H. (ed.). 1979. Management of semi-arid ecosystems. Elsevier Publishing Co., Amsterdam.

    Google Scholar 

  • Wareing, P. F. andI. D. J. Phillips. 1978. The control of growth and differentiation in plants, 2nd ed. Pergamon Press Inc., New York.

    Google Scholar 

  • Weaver, S. E. andP. B. Cavers. 1980. Reproductive effort of two perennial weed species in different habitats. J. Appl. Ecol.17: 505–513.

    Article  Google Scholar 

  • Webb, J. H. 1972. A new transplant method of eucalyptus. Austral. Pl.6: 270–271.

    Google Scholar 

  • Weislander, A. E. andB. O. Schreiber. 1939. Notes on the genusArctostaphylos. Madrono5(1): 38–47.

    Google Scholar 

  • Wellington, A. B., H. A. Polack andI. R. Noble. 1979. Radiocarbon dating of lignotubers from mallee forms ofEucalyptus. Search10: 282–283.

    CAS  Google Scholar 

  • Wells, P. V. 1962. Vegetation in relation to geological substratum and fire in the San Luis Obispo Quadrangle, California. Ecol. Monogr.32: 79–103.

    Article  Google Scholar 

  • — 1969. The relation between mode of reproduction and extent of speciation in woody genera of the California chaparral. Evolution23(2): 264–267.

    Article  Google Scholar 

  • Wenger, K. F. 1953. The sprouting of sweetgum in relation to season of cutting and carbohydrate content. Pl. Physiol.28: 35–49.

    CAS  Google Scholar 

  • Westman, W. E. 1979. Californian coastal forest heathlands. Pages 465–470in Specht, R. L. (ed.), Heathlands and related shrublands. Elsevier Publishing Co., Amsterdam.

    Google Scholar 

  • White, P. S. 1979. Pattern, process, and natural disturbance in vegetation. Bot. Rev. 45: 229–299.

    Article  Google Scholar 

  • Williams, G. C. 1975. Sex and evolution. Princeton Univ. Press, Princeton, New Jersey.

    Google Scholar 

  • Williams, I. J. M. 1972. A revision of the genusLeucadendron (Proteaceae) Contr. Bolus Herbarium No. 3. Rondebosch C. P. Republic of South Africa.

  • Zalasky, H. 1975a. Chimeras, hyperplasia, and hypoplasia in frost burls induced by low temperature. Canad. J. Bot.53: 1888–1898.

    Google Scholar 

  • — 1975b. Low temperature induced cankers and burls in test conifers and hardwoods. Canad. J. Bot.53(21): 2526–2535.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, S. Lignotubers and burls— their structure, function and ecological significance in Mediterranean ecosystems. Bot. Rev 50, 225–266 (1984). https://doi.org/10.1007/BF02862633

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02862633

Keywords

Navigation